Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Article in Press

Volume 9, Issue 1 (2020)

    Review Article Pages: 1 - 3

    Ferromagnetism in (Ga, Mn) as Synthesized by Mn+ Ion Implantation and 5 MeV Si++ Ion Beam induced Recrystallization

    S K Dubey

    In this study, gallium arsenide samples were first implanted with 325 V Mn ke + ions for the fluence of 16 2 2 10 ions cm− × . These implanted samples were further irradiated using 2 5MeVSi + ion beams for the fluence of 16 2 1 10 ions cm− × at a substrate temperature of 350 0C for recrystallization. Super conducting quantum interface device (SQUID) measurements on asimplanted sample revealed the paramagnetic behavior. While, after irradiation with 2 5MeVSi + ions, SQUID measurements showed the hysteresis loop indicative of the ferromagnetic behavior. Ferromagnetic transition temperature after irradiation of (Ga,Mn). As samples measured from zero field cool and field cool measurements were found to be 292 Kelvin.

    Volume 10, Issue 4 (2021)

      Research Pages: 1 - 6

      Role of Materials Science and Engineering in Metal Additive Manufacturing

      Prabir K. Chaudhury

      Additive Manufacturing or Direct Manufacturing, popularly known as 3D Printing, has become the leading-edge manufacturing technology. Today Metal Additive Manufacturing (MAM) is a reality, not only for prototype fabrication, also for functional parts in all industrial sectors. Design freedom that the AM processes offer has led to design and engineering of new, complex, light-weight structures in all applications. However, in order to realize further and widespread use of metal AM for manufacturing critical components, it is necessary to explore the inherent material freedom in AM. While new metal AM materials are being developed, the role of Materials Science and Engineering (MSE) is becoming more apparent than ever before. This presentation will highlight the increasing role of Materials Science and Engineering in metal AM technologies. This presentation will show the essence of metallurgical principles in realizing full scope of material freedom in metal additive manufacturing. This presentation will demonstrate how fundamental MSE principles can be utilized to develop new materials, optimize metal AM and post processing, and their controls that cannot be achieved by conventional manufacturing methods. The examples with new Aluminum AM alloys will be presented, leading to a path of developing advanced and higher performance products for critical applications.

    Relevant Topics


tempobet giriş

tempobet giriş


tipobet yeni giriş adresi tipobet e yeni giriş tipobet güncel giriş adresi imajbet giriş adresi

mobilbahis giriş

arrow_upward arrow_upward