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Abstract

3D-DGI (Discrete Geometrical Invariants) method allows to reduce initial rectangle matrices N×M (N-is number of data points, M < N is 
number of columns) to a matrix M× P (P=13), where P – represents a set of invariants combined from of the first, second, third and the 
fourth moments inclusive. This “universal” platform allows to compare any random trendless sequences (TLS) with each other. The 
further analysis shows that one can extract only two significant parameters/criteria (free from treatment and model errors) for 
comparison of TLS recorded from the given set of ADCs. The experimental data set represented 15 rectangle matrices with 
parameters N=20000, M=150 (filtered in the region 1.1-5.0 kHz) and 15 matrices that were not subjected to the filtration procedure. 
The proposed algorithm given in the paper allows to select the “best” ADC&Amplifier combination from the given ones based on analysis 
of their TLS(s) and proposed criteria. The authors think that the algorithm can find a wide application in the industrial electronics 
based on the simplicity, reproducibility and reliability of the proposed procedure.
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Introduction
The hidden information that is contained in different TLs(s) 

and their extraction with the help of new method. 3D-Discrete 
Geometrical Invariants (DGI) method; ADC noises and its hidden 
information; Reduction of rectangle matrices to small amount of 
quantitative parameters [1].

Noise diagnostics equipment in recent years is widely used 
to monitor the quality and reliability of equipment. This 
method combines the small-time expenses and no risk of 
damage to the component in question [2].

It is known three main methods used in noise diagnostics. 
These include the Fourier transform of the noise signal, wavelet 
analysis, and flicker noise spectroscopy. A brief description and 
comparison of these methods are given in table 1. Other methods 
with their merits and demerits proposed by the professors 
Timashev S.F. and Yulmetyev R.M. are discussed in paper [3].

The existing
method

Conditions of its
application and
merits

Possible
limitations and
the limits of its
applicability

Comments

Fourier
transformation

The calculation
and subsequent
analysis of the
frequency
spectrum of a
signal using
Fourier transform.
Good elaboration
of the theory of
spectral analysis
of signals.

It is applicable
when signals are
stationary.
Difficulty of
analysis in terms
of changes the
calculated
spectrum in time.
Limited accuracy
at low
frequencies. The
Gibbs “oscillation"
phenomenon
related to the
transformation of
rectangle signals
contains large

unremovable
error.

Some set of the
calculated
frequencies does
not belong to the
system
considered. The
F-transform is
used independently 
and not as a fitting 
function for description 
of a signal

S(t).

Wavelet transform Decomposition of
a signal into
functions of finite
duration
(wavelets). The
method is
especially
effective when at
the slow signal
component
background, a

Insufficient
elaboration of the
theory of analysis.
Lack of criteria for
choosing the
basis of signal
decomposition.

Contains
uncontrollable
errors especially
related to
application of the
specific types of
wavelets to the
chosen random
sequence. Each
type of wavelet,
being applied to
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relatively fast
component may
appear

the same TLS,
contains the
specific error.

Flicker noise
spectroscopy

According to this
theory, electrical
noise is the result
of an irreversible
evolution of a
multilevel
hierarchical
system from a
variety of noise
sources. Each
level has its own
space-time
organization.

It is difficult to
separate this type
of noise from the
mixture of others,
including heat, the
Schottky’s and
other type of
noises. The
physical nature of
this noise, in spite
of its wide
propagation, is
still remained as
unknown.

The frequency
behavior of the
flicker-noise is
definitely known
at low frequencies
- ) (S, while
for the wide
frequency range it
is

a subject of
discussion.

Table 1: Comparison of the basic noise analysis methods.

The described methods make it possible to carry out flaw detection 
of components and entire blocks of equipment. This task can also be 
extended to the case of choosing the best component or block 
among the existing ones.

The question arises, is it possible to propose a simple 
method, which enables to select the “best” component 
or block (ADC&Amplifier combination in our case) from the existing 
ones? The method should be rather general and simple, having 
the minimal computation cost and algorithmically simple being 
embedded into some microcontroller device.

In this paper, based on the 3D-DGI method we want to propose a 
simple algorithm that enables to select the “best” ADC&Amplifier 
combination among the existing ones. The proposed procedure one 
can find a wide application in the industrial electronics, where it 
is necessary to test/sort some devices based on their TLS.

Experimental Part

A non-inverting amplification cascade on an operational 
amplifier is used as a noise/random fluctuation source. The used 
electrical circuit is shown in Fig.1. R3 is the signal source 
equivalent impedance for the amplifier. The gain of the first stage 
is set by the ratio of resistors R1/R2. Since the noise amplitude 
considered as the output of the first stage is small and does not 
exceed the ADC noise, the second stage of the amplifier on U2 is 
used. As a result, the ADC noise is not noticeable against the 
background of the connected amplifier noise. The second 
stage of the amplifier also does not contribute significantly to the 
overall noise. The first stage has a gain of 101, the second stage has 
a gain of 200.

The LM224 quad operational amplifier were used in these 
amplification cascades. Since there are four operational 
amplifiers embedded into the LM224 chip, it is possible to build 
two amplifiers as it is shown in Fig. 1 for one chosen chip. We 
examined 15 LM224 chips and 30 amplifiers, respectively. An 
amplifier circuit board was made containing a socket, where the 
LM224 chip was embedded. Thus, a possible “identity” of the 
amplifier circuits was ensured.

We should notice that LM224 is a very cheap operational amplifier 
and no conventional noise parameters are given in its datasheet 
specification. Even the word "noise" cannot be found in their covering 
documents.

Elvis II workbench by National Instruments was used as ADC. 
Elvis II has 1.25 MS/s (Mega samples per second) maximum 
sampling rate and 16-bit resolution.

The sampling frequency in the experiment was set to 10 kHz. To 
prevent external interference, the measured TLS was digitally filtered 
with a bandwidth between 1.1 kHz and 5 kHz.

For each amplifier, 135 measurements were successively carried. 
Each measurement contains 20000 data points. Therefore, one set of 
measurements represents itself a rectangle matrix M(with N=20000 -
data points, M=135 includes all successive measurements/columns). 
After digital filtering, the initial portion of the measured 
signal containing a possible transient regime was cutoff. 
In the measurement procedure, amplifier noise is added to the 
measured signal.

Description of the Algorithm

For solution of the main problem one can apply the 3D-DGI 
(Discrete Geometrical Invariants) -method. Partly it was described in 
paper [8]. In this work we choose the complete version. It is described 
in the Mathematical Appendix. As it follows from expression (A14a), 
this method gives a “universal” platform, which allows to compress an 
initial matrix M(N×M)  Yj(m) (j=1,2,..,N is a number of data points/
matrix rows, m=1,2,...,M (M < N) is a number of columns/successive 
measurements) to the matrix Mc(M×P)  ym(p)(p=1,2,…P). This 
reduced matrix has P=13 columns only, which are distributed as 
follows: (p=1-3: <yα> - gravity centers or correlations of the first order; 
p=4-6 for R(α,β)(3) -the reduced correlations of the third order; 
p=7-12, α,β = 1,2,3 for Aαβ(6) -correlations of the second order; P=13 
I4(1) -the reduced correlation of the fourth order.). They determine the 
complete combination of the moments and their intercorrelations (3+3
+6+1=13) up to the fourth order inclusive. In the result of application 
of the 3D-DGI method we obtain (P=13) distributions ym(p) that 
demonstrate the variations of each statistical parameter with respect 
to the number of columns/repeated measurements (m=1,2…,M).

The further reduction is possible if one takes into account that 
each random function ym(p) for the fixed value of p is located inside 
the rectangle Range(m) (Range[ym(p)]), where Range(f)=max(f) –
min(f). For comparison of one random function y1,m(p) with another 
y2,m(p) corresponding to the fixed column p one can use the 
following simple formula.

This expression in spite of its simplicity is really effective 
for comparison of the statistical closeness of a pair random 
functions belonging to the given/another sampling participating 
in comparison operation of two matrices having the 
statistically close columns. Really, if the function Q1,2(p) is 
located in the interval [1,2] then the pair random functions are 
statistically close to each other. In the case when Q1,2(p) (0,1) one 
can conclude that the pair random functions compared from two 
matrices y1,m(p) and y1,m(p) are statistically different. Besides 
this important parameter given by expression (1), one can take 
into account the symmetry of the random function ym(p). 
Any random function located in the 
rectangle )m(egnaR(Range[y(m)]) crosses the line <ym(p)> 
coinciding with its
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mean value. Therefore, for evaluation of the symmetry of a random 
function one can introduce the value

for any fixed p. If the value Sm(y) is located near zero (Sm(y) )0 
then the line mean(y)  <y> divides the rectangle
)m(egnaR(Range[y(m)]) on two almost equal parts. In other cases, 
the value Sm(y) located in the interval [-1/2, 1/2)] determines the 
measure of asymmetry. After application of expression (1) for 
comparing of similar columns (belonging to the fixed p) one can 
receive finally the vector V(p) of the length P=13 that contains 
information about the statistical closeness of two compared matrices. 
This vector can be used for comparison of the “pattern” initial matrix 
with the rest tested ones. What we should do in cases, when the 
“pattern”/”best” matrix is absent? Therefore, the problem is 
formulated as follows: how to choose the “best” matrix from the given 
ones based on simple criteria that are free from treatment errors and 
model assumptions? In this case, one can suggest two simple criteria 
based on the following observations. Let us normalize the 
compressed matrix ym(p).

In order to receive the value of the range of the normalized 
function (3) equals one for any value of p. After integration of (3) with 
respect to its mean value we obtain the matrix Jym(p). If one 
calculates the range of the integrated matrix Range(Jym(p)) with 
respect to all equivalent columns p then we receive the vector J(p). If 
one evaluates the Range(J(p)) we obtain finally only one parameter 
that can be used for comparison of the chosen rectangle matrix with 
another one. Another important parameter is associated with 
calculation of the asymmetric parameter Sm(J(p)) in accordance with 
expression (2) for all values of p. Schematically, the final stage 
allowing to select two parameters from the initial rectangle matrices 
among the given ones can be expressed as

On the right-hand side, we have only two parameters that can be 
associated with selection of the “best” parameters and serve as 
simple criteria based on their minimal values. In addition to S/
N criterion these two parameters are associated with stability 
and robustness of the measured TLS expressed in the form of 
rectangle matrices. Here we should stress again that these two 
criteria are free from treatment errors and the model errors 
including a priory-imposed probability assumption.

It is interesting to notice that simple expression (1) can be used 
also for comparison each successive measurement with another one 
presented in the given rectangle matrix [N M]. If one compares the 
vectors ym forming the columns of the initial matrix with each other, 
then, in the result of application (1), one can obtain the symmetrical 
matrix U(m1,m2) (m1,2 =1,2,…,M) with elements located in the 
interval 0 ≤ U(m1,m2) ≤ 2. Only elements located in the interval 1 ≤ 
U(m1,m2) ≤ 2 will correspond to a “good” experiment; while the 
elements from the interval 0 ≤ U(m1,m2) < 1 should be considered as 
possible “outliers” and correspond to a “bad”/unsuccessful

experiment. In the same manner, one can compare with the help of 
(1) two different matrices U(j,m) and V(j,m) having the same number 
of columns.

Data Treatment Procedure
In the result of experiments described in section 2 we receive 60 

rectangle matrices. Each matrix contains N=20000 data points and 
M=135 columns. The first 30 ADC connected with amplifiers were 
filtered in the range (1.1-5.0 kHz) in order to suppress possible 
interferences that would disturb the recorded TLS(s). Each tested 
amplifier was connected with the ADC and the pair connected 
amplifiers (as it is shown in Fig.1) were considered as “identical” 
to each other, however, their influence on the recorded signal can 
be slightly different. Other 30 matrices were recorded in the 
same conditions, however, there TLS(s) were not filtered. We 
repeat the problem that we are going to solve because of its 
importance: Is it possible to choose the “best” ADC&Amplifier 
combination based on two simple statistical criteria proposed 
in section three? The proposed algorithm can be divided on three 
basic steps.

Figure 1: The experimental setup of the electric circuit, used in the 
experimental measurements. All explanations are given in the text.

Step 1. Reduction to three incident points.

In order to decrease the computational cost related to treatment of 
the large-size rectangle matrices, we use the procedure of reduction 
to three incident points. This procedure was described earlier 
in papers [9-11]. The essence of this procedure is the following: 
we choose initially b (3 < b << N) points and select from them only 
three incident/important points (max(b), mean(b) and min(b)) 
that are remained invariant relatively [b]! permutations. If one can 
form three compressed distributions Yupj(m), Ymnj(m) and 
Ydnj(m) corresponding to maximal, mean and minimal values, 
accordingly, and take their averaged value Yavj(m) = (1/3)Y(
upj(m)+Ymnj(m)+Ydnj(m)), then we obtain the compact/
compressed set of TLS(s) that it is suitable for the further 
analysis. For a certain value of the compressed parameter b it is 
possible to prove that the compressed data Yavj(m) is similar to initial 
data Yj(m). In order to compare their similarity, one can use the 
statistics of the fractional moments. This generalized statistic 
allows to compare TLS(s) having different samplings. In our 
case, at b=10 the value of the Pearson correlation coefficient applied 
for comparison of the generalized mean values (see the definition 
in [5]) formed from the TLS Yavj(m) and Yj(m) is located in the 
interval [0.95-0.99]. Therefore, one concludes that compression in 
ten times (b=10) keeps the similarity between the initial 
sequences Yj(m) and their compressed replicas Yavj(m) and 
considerably facilitate their further calculations. These two compared 
sequences are shown in Fig.2. In a similar manner, we prepared 60 
compressed matrices using the same value b=10.
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Figure 2: The comparison of initial noise (red points) with 
the compressed noises realized with the help of reduction to 
three incident points procedure (b=10). They are similar to each 
other. The Pearson correlation coefficient lies in the interval 
[0.95-0.99]. For comparison, we demonstrate the filtered data of the 
rectangle matrix corresponding to combination ADC&Amplifier 
“1”. The same procedure was realized for all available 60 matrices.

It is interesting also to compare the quality of the performed 
experiment with the help of expression (1). The comparison of the 
compressed data (calculated with the help of expression (1)) for the 
rectangle matrix corresponding ADC&Amplifier-1.1 combination 
for the filtered data is shown in Fig.3. As it follows from this 
figure all correlations are concentrated in the interval [1.604-1.998] 
and “bad” measurements (less than one) are absent. All other 59 
matrices are tested in the same manner and possible 
outliers and “bad” measurements were not found.

Figure 3: The correlation between successive 
measurements calculated with the help of expression (1) for the 
same rectangle matrix corresponding to combination ADC&Amplifier 
“1”. The interval of correlations is clearly shown also. The black 
solid line shows the sequence of the ranged amplitudes.

Step 2. The usage of 3D-DGI method.

As it has been explained in the previous chapter and in the 
Mathematical Appendix, this method “prepares” a “universal” platform 
for compression of an initial rectangle matrix M(N×M)  Yj(m) to the 
matrix Mc(M×P)  ym(p) (p=1,2,…P) having P=13 columns, 
composed from the moments and their intercorrelations up to the

fourth order inclusive. In our case, we compressed all 60 matrices 
and received the set of the compressed matrices for their 
further comparison. A typical surface for the first column of the 
rectangle matrix corresponding the previous 
ADC&Amplifier-1.1 combination for the filtered data is shown in Fig.4.

Figure 4: Typical surface calculated for the compressed 
curve ym=0(p). These peaks demonstrate the sensitivity of 
different moments to variations of the matrix Mc(M.snmuloc )P

Step 3. The final comparison of all filtered/nonfiltered data.

The final comparison is realized with the help of the scheme (4). 
We skip some intermediate parameters and demonstrate only 
Range[J(p)] and Sm[(J(p)] for each compared matrix. The key figures 
5(a,b) and 6(a,b) show clearly how to select the “best” combination 
[ADC&Amplifier-n, (n+0.5), where the integer numbers n=1,2,…,15 
numerate the first amplifier, while the half-integer numbers n=1.5, 
2.5,…,15.5 belong to the combination of ADC with the second 
amplifier. As it follows from simple analysis the best selection 
belongs to combination “4”, the second place corresponds to 
the combination “14.5” the “worst” combination is “6.5”.

Figure 5(a): This key figure demonstrates the distribution of the 
Range[J(p)] covered all possible combinations of ADC with types 
of amplifiers -one type is marked by integer numbers: 1,2,…,15, 
while the second type is marked by semi-half values 1.5,2.5,
…,15.5. As it follows from this simple analysis the best 
selection belongs to combination “4”, the second place occupies 
the combination “14.5” the “worst” combination is “6.5”.
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Figure 5(b): This figure demonstrates the influence of the filtration 
procedure. The ranges are increased and combinations are changed. 
It means that filtration procedure is important.

The distribution of symmetry parameter Sm[J(p)], which should 
accept also the minimal values and shown in Fig.6(a) confirms the 
selection of the combination “4” and “14.0”, occupying the second 
place. The “worst” place is changed.

Figure 6(a): The distribution of symmetry parameter Sm[J(p)], 
which should accept also the minimal values confirms the selection of 
the combination “4” and “14.0”, occupying the second place. The 
“worst” place is changed. This conclusion is valid for the filtered data

This conclusion is valid for the filtered data. The figures 5(b) 
and 6(b) prove that filtration procedure is important. They select 
other combinations as “2.5” and “14.5” and in in Fig. 6(b) there is a 
whole region with the values located in the interval [7.37 10-4, 
1.31.]3-01 One can notice also that their minimal values are 
higher with comparison with values subjected to the filtration 
procedure.

Figure 6(b): For nonfiltered data the distribution of Sm[J(p)] is 
different. We have combinations “3”-“15” [ADC&Amplifiers] located in 
the vicinity of zero value, however these combinations are not 
sufficient for the selection of the “best” one. Comparison the data of 
this figure with Fig. 5(a) allows to notice that the values Sm[J(p)] for 
the filtrated data is smaller and are closer to zero value.

Figure 7 demonstrates the distribution of minimal values 
(realized with the help of expression (1)) and shows clearly the 
result of the filtration procedure. All filtered data become more 
correlated with each other, while uncorrelated data giving the 
values less than one can be considered as “dirty” data subjected by 
the influence of some uncontrolled external factors.

Figure 7: This figure demonstrates clearly the significance of the 
filtration procedure. If we compare the minimal values realized for the 
both cases then one can notice that the filtered data are more 
compact and closer to each other (the values of the correlation 
parameter are higher) in comparison with unfiltered data. Therefore, 
one concludes that this procedure is really important because it 
reflects the influence of the “hidden” external factors that can be 
removed with the help of filtration procedure.

Results and Discussion
In this paper we show how to create a “universal” platform based 

on the 3D-DGI – method.
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It helps to reduce the large-size initial rectangle matrices and 
finally one can receive only two parameters (expressed by 
relationships (1) and (2)) that in many cases are sufficient for solution 
of the problem formulated in section one. We do believe that these 
two parameters because of their generality one can find an 
application in metrology and different nanotechnologies as a 
simple metrological standard. Besides, it can be used in the 
industrial electronics when it is necessary to compare the 
“reference” device (presented mathematically as a rectangle matrix) 
with the tested one or select the “best” gadget from the existing 
ones. These two key problems can be solved with the help of 
expressions (1) and (2). We deliberately imitate this situation with a 
“similar” experiment that will be frequently met in the industrial 
applications. The propose method is “universal” and authors are 
opened for analysis of other interesting data in order to collect 
necessary statistics associated with this method in order to 
prove its “universality”. It reminds the partition function used in 
the statistical mechanics when the Hamiltonian operators 
containing large number of freedom degrees are 
transformed with the help of partition function to a finite number 
of thermodynamic parameters. The same procedure is realized with 
the help of 3D-DGI method. Schematically this reduction can 
be presented with the help of the following scheme.

Actually, on can claim that this platform enables to describe a wide 
set of TLS(s) and transform them to the corresponding 3D-surfaces 
serving as a specific “fingerprints” of these TLS in the 13-
th dimensional features space. Definitely, the authors are going to 
use this “unexpected finding” and test it on other available data in 
their further research.

Mathematical Appendix.

In the Mathematical Appendix we describe the mathematical 
details associated with the derivation of the complete DGI in 
3D-space. We remind here that preliminary results based on 
the application of the incomplete DGI form of the fourth order in 3D 
space is outlined recently in [8]. Let us consider the power-law form 
of the fourth order:

(A1)

In expression (A1) the upper indices define the combination of the 
variables y ( =1,2,3) fixing the location of an arbitrary point 
M(y1,y2,y3) in 3D-space, the low indices determine the values of the 
power-law exponents that correspond to the algebraic form of the 
fourth order. The choice of the sign’s combination ( ) before the 
constants in (1) will be explained below. Three random sequences 
are determined by the values r ( k =1,2,3; k=1,2,…,N). 
Expression (1) represents itself the complete form of the fourth order 
that contains the combination of three variables associated with an 

arbitrary point M(y1,y2,y3) and three arbitrary sequences r k. The 
desired DGI is obtained from the following requirement

In order to remove in expression (A2) the cubic terms we 
introduce the variables

and nullify the linear terms. This requirement helps us to separate 
the desired variables Y  from each other and keep only the terms of 
the second and fourth orders, correspondingly. In order to decrease 
the number of constants in (A2) and derive the DGI not depending on 
some additional constants one defines three key ratio 
constants )3,2( ,)3,1( ,)2,1( = ) , ( htiw ,) , (R

It is convenient also to introduce the following notations for 
the integer moments and their intercorrelations and present them as

In the result of the introduced notations (A4) and (A5), the system 
of linear equations for the finding of unknown ratios R( , ) from the 
nullification requirement of the entering linear terms accepts the form

The linear system of equations helps to reduce 3 moments (Q333, 
Q222, Q111) and 7 intercorrelations of the third order (Q332, 
Q322, Q221, Q211, Q331, Q311, Q321) to calculation of three 
unknown ratios R( , ) only. We should notice also that the 
combination of the algebraic signs in (1) is chosen in that way for 
the keeping of the partial solution R=1 of system (A6a) in the 
case when all three random sequences r k are identical to each 
other, i.e. r1k = r2k = r3k. It is natural to define it as the case of 
spherical symmetry. If only two sequences coincide with other (for 
example, r1k = r2k  r3k ) then we deal with the case of the cylindrical 
symmetry. In this case, the linear system (A6a) is reduced to the 
couple of linear equations relatively the variables R(1,2)
R(1,3)=R(2,3). The number of triple correlations equals four in this 
case (Q111, Q113, Q133, Q333). The system (A6a) is simplified 
and reduced to the couple of linear equations relatively two 
variables R(1,2) and R(1,3)
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Equations (A6) facilitate considerably the further calculations. After 
averaging procedure applied to expression (A2) the structure of the 
fourth order form can be rewritten as

As before [1-2], we chose the value of the invariant I4 as the 
double value of the free constant figuring in the left-hand side of (A7). 
After some algebraic manipulations the fourth and the second order 
forms entering to the left-hand side can be presented as

The constants Asa denifed era )b8( noisserpxe ni gnirugif 

The constant I4 (defined by 3 moments and 12 intercorrelations of 
the fourth order) figuring in the right-hand side of (A7) is defined as

It is interesting to notice that in the case of the spherical symmetry 
(r1k = r2k = r3k) all correlations coincide with each other and the 
value of I4 equals zero. The form of the fourth order (A7) admits the 
separation of the variables in the spherical system of coordinates. If 
one accepts the conventional notations:

then substitution of these variables into (A7) leads to the 
following biquadratic equation relatively the unknown radius R() ,

The polynomials P2,4( , ) entering in (A12) are defined by the 
following expressions

The last expressions (A11)-(A13) determine the final form of the 
DGI in 3D-space. It includes three surfaces determined by 
expressions (A11). The further analysis shows that expression (12b) 
equals zero (because I4 = 0) in the case of the coincidence of three 
compared random sequences (r1k = r2k = r3k). The radius R( , ) can 
contain the complex expression when the integrand in (A12b) 
becomes negative. It accepts the negative values when the constant 
I4 in the most cases defined by expression (A10) becomes negative. 
In this case, it is convenient to rewrite expressions (A11) in the form

Finishing this extended Appendix one can conclude that 
this method (free from treatment errors and model 
assumptions) represents itself a “universal” platform that can 
be used from comparison of different data expressed in the 
form of rectangle matrices. Really, any initial matrix N×M (N is a 
number of data points, N>M, M is a number of columns) is 
reduced to the matrix M×Prm (Prm=13) that can be used for the 
further manipulations. The most significant part is related to the 
radius modulus ) , (R  in expression (14a) and, namely, this surface 
will be used for reduction purposes.
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