Molecular Biology: Open Access

ISSN: 2168-9547

Open Access

Characterization of Pores Size, Surface area and Fractal Dimensions of Activated Carbon Powder Prepared from Date Palm Leaves


Fatima Musbah Abbas*, Zehbah Ali Al Ahmad, Rehab Omer Elnour Elgezouly and Abubaker Elsheikh Abdelrahman

Activated carbon (AC) powder was prepared by the KOH activation of date palm leaves (Phoenix dactylifera L). Date palm leaves (DPLs) were pre-carbonized at low temperatures, ground to a fine green powder and activated with 0%–7% KOH (by weight), before being carbonized at 700°C in a nitrogen atmosphere. The activated carbon powders (ACPs) produced was characterized in terms of pore size, surface area and fractal dimensions of pores. The measurements were made using nitrogen adsorption properties (BET), small angle X-ray scattering (SAXS) and scanning electron microscope (SEM) techniques. Results indicate that the pore structure of the ACs is mainly composed of mesoporous micropores of (0.88-17.0 nm) (BET) and (8.0-10.2 nm) (SAXS) with a relatively small surface area (SBET) of (0.37–2.0222 m2/g) and (SSAXS) of (0.8–0.6111 m2/g) respectively. The BET and SAXS data were of the same order of magnitude and the pore size destruction was close to that treated with 1% KOH. The fractal dimensions of pores are in the range of 1.62 to 1.7, which is like the particle sizes of carbon black, according to the visual inspection and gray-level histogram of the internal structure. These results indicate a lack of KOH concentration does not improve the surface areas of the ACs powder. Probably the KOH concentration is too high, but AC powders with micropores and mesopore structures could be used as a filter for scavenging contaminants from liquid and gases.


Share this article

50+ Million Readerbase

Journal Highlights

Google Scholar citation report
Citations: 526

Molecular Biology: Open Access received 526 citations as per Google Scholar report

Molecular Biology: Open Access peer review process verified at publons

Indexed In

arrow_upward arrow_upward