Synthesis and characterization of nanomaterials for solid oxide fuel cells

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Synthesis and characterization of nanomaterials for solid oxide fuel cells

3rd International Conference and Expo on Ceramics and Composite Materials

June 26-27, 2017 Madrid, Spain

Sam Solomon

Mar Ivanios College, India

Posters & Accepted Abstracts: J Material Sci Eng

Abstract :

Introduction & Aim: Solid oxide fuel cells (SOFCs) are a class of fuel cells characterized by the use of a solid material as the electrolyte. SOFCs use a solid electrolyte to conduct negative oxygen ions from the cathode to the anode. The electrochemical oxidation of the oxygen ions with hydrogen or carbon monoxide thus occurs on the anode side. The purpose of this presentation is to discuss the synthesis and characterization methods of nanomaterials for electrolytes in solid oxide fuel cells. Synthesis: One of the efficient methods for the synthesis of nano particles is the modified combustion technique. In this method, stoichiometric amounts of chemicals are made in to a solution and heated. The solution boils and undergoes dehydration followed by decomposition leading to a smooth deflation producing foam. On persistent heating, the foam gets auto-ignited due to selfpropagating combustion, giving a voluminous fluffy nanopowder. The obtained powder is annealed in oxygen atmosphere below 700oC to eliminate the trace amount of organic impurity that may remain in the sample. Characterization: Structure of the as-prepared powder can be identified by the powder X-ray diffraction (XRD) technique and the particle size using transmission electron microscopy. The powder can be pressed into disc pellets of thickness 2 mm using a hydraulic press with a pressure of 100 MPa, and then sintered at optimized temperatures. The surface morphology of the sample is analyzed using scanning electron microscopy (SEM). The impedance spectroscopic study is carried out by making the pellet in the form of a disc capacitor. Conclusion & Significance: The impedance spectroscopic studies establish the feasibility of the materials to use as an electrolyte in SOFCs.

Biography :


Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

arrow_upward arrow_upward