Stretchable and hydrophobic electrochromic devices using wrinkled graphene and PEDOT: PSS

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Stretchable and hydrophobic electrochromic devices using wrinkled graphene and PEDOT: PSS

Joint Event on 2nd Edition of Graphene & Semiconductors | Diamond Graphite & Carbon Materials Conference & 6th Edition of Smart Materials & Structures Conference

April 16-17, 2018 Las Vegas, Nevada, USA

Hossein Sojoudi

University of Toledo, USA

Scientific Tracks Abstracts: J Material Sci Eng

Abstract :

We present an electrochromic device (ECD) fabricated using PEDOT:PSS and graphene as active conductive electrode films and a flexible compliant polyurethane substrate with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMI-TSFI) additive, as ionic medium. This device with a docile, elastic intermediate substrate along with a transparency controlled PEDOT:PSS film provides a wide color contrast and fast switching rate. We harness wrinkling instability of graphene to achieve a hydrophobic nature without compromising transparency of the ECD. This mechanical self-assembly approach helps in controlling the wavelength of wrinkles generated by inducing measured prestrain conditions and regulating the modulus contrast by selection of underlying materials used, hereby controlling the extent of transparency. The reduction and oxidation switching times for the device were analyzed to be 5.76 s and 5.34 s for a 90% transmittance change at an operating DC voltage of 15 ├?┬▒ 0.1 V. Strain dependent studies show that the performance was robust with the device retaining switching contrasts even at 15% uniaxial strain conditions. Our device also exhibits superior antiwetting properties with an average water contact angle of 110├?┬░ ├?┬▒ 2├?┬░ at an induced radial prestrain of 30% in the graphene film. A wide range color contrast, flexibility, and antiwetting nature of the device envision its uses in smart windows, visors, and other wearable equipment where these functionalities are of outmost importance for developing new generation of smart interactive devices

Biography :

Hossein Sojoudi is an Assistant Professor in the Mechanical, Idustrial, and Manufacturing Engineering Department at the University of Toledo. Prior to joining UT, he was a Postdoctoral Associate and Lecturer in the Mechanical Engineering Department at the Massachusetts Institute of Technology (MIT) with a joint appointment in the Chemical Engineering Department. Prior to MIT, Hossein was a Postdoctoral Fellow at the Georgia Institute of Technology, where he obtained his PhD as well in Mechanical Engineering with a Minor in Materials Science. He received several awards including the Materials Research Society Best Presentation Award, Prestigious Ann Robinson Clough Grant, and several other awards from MIT.

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

arrow_upward arrow_upward