GET THE APP

Quantum simulation of (1+1) D U (1) lattice gauge-Higgs model by using cold atoms in one-dimensional optical lattice
..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Quantum simulation of (1+1) D U (1) lattice gauge-Higgs model by using cold atoms in one-dimensional optical lattice


3rd International Conference on Theoretical and Condensed Matter Physics

October 19-21, 2017 New York, USA

Yoshihito Kuno, Shinya Sakane, Kenichi Kasamatsu, Ikuo Ichinose and Tetsuo Matsui

Kyoto University, Japan
Nagoya Institute of Technology, Japan

Scientific Tracks Abstracts: J Material Sci Eng

Abstract :

Recently atomic quantum simulation for high-energy physics comes to become an active field in cold-atom physics society. In particular there are a plethora of proposals to build up a quantum simulator for lattice gauge theory by using cold atoms in an optical lattice. To realize the quantum simulator for lattice gauge theory, theoretical proposal for future experiment is important. In this talk, we show theoretically an atomic quantum simulator of U lattice gauge-Higgs model based on an extended Bose-Hubbard model in one dimensional (1D) optical lattice. This quantum simulator of the lattice gauge theory is directly connected towards the Bose-Hubbard model with nearest-neighbor (NN) interactions. In the 1D system the most important ingredient, i.e., Gauss� law can be implemented in a much simple way, i.e., only controlling the NN interactions. Furthermore we show a global phase diagram. Also by using the correspondence between the Bose Hubbard model and the lattice gauge theory we interpret these phases from the view of the lattice gauge theory. In addition, it is important and interesting to detect the non-equilibrium properties of the quantum simulator. We focus on simulating the dynamics of an electric flux (confinement string) in both Higgs and confinement phase. To study this subject we use the Gross-Pitaevskii equation for the Higgs (superfluid) regime and the semi-truncated Wigner method for shallow confinement regime. We certify that the electric flux spontaneously breaks in the Higgs phase on the other hand in the shallow confinement regime the electric flux is dynamically stable. These results are expected to be measured in future real experiments. Moreover our numerical simulations find that the Schwinger-like mechanism which can be observed. Electric fields oscillate via a Higgs and anti-Higgs pair creation.

Biography :

Yoshihito Kuno is Postdoctoral Fellow of Japan Society for the Promotion of Science (JSPS), and a Member of Quantum Optics Group of Kyoto University, Japan. He got his PhD at Nagoya Institute of Technology.

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

arrow_upward arrow_upward