GET THE APP

Optimization of synthesis methodology for and#945;-chymotrypsin enzyme nanoparticles
..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Optimization of synthesis methodology for α-chymotrypsin enzyme nanoparticles


Proceedings of Biomaterials 2021 & Ceramics 2021 & Advanced Energy Materials 2021

June 21, 2021 | WEBINAR

Imre Hegedus, PhD; Endre Nagy, prof; Bela Ivan, prof. Gyorgy Kasza, PhD and Domokos Mathe, PhD

Research Institue of Biomolecular and Process Engineering, University of Pannonia, Veszprem, Hungary
Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Budapest, Hungary

Scientific Tracks Abstracts: J Material Sci Eng

Abstract :

Statement of the Problem: Enzyme nanoparticles represent a new class of nanomaterials with acceptable biocatalytic activity and very long life-time. Polymerization initiated from the modified surface of the enzyme (see Image, Step I and II) leads to enzyme molecules covered with a polymer layer. These may have at least one order of magnitude longer lifetime than that of free enzymes. However, their bio-catalytic activity is at least about 50% less than that of free enzymes. It is not clear how the size of the polymer layer and the strength of enzymepolymer bond influence the stability of enzyme nanoparticles. Methodology & Theoretical Orientation: α-Chymotrypsin enzyme (bovine) was used for the synthesis. Enzyme nanoparticles containing covalent bond (CEN), ionic binding (IEN) and connected with van der Waals forces (vEN) between enzyme molecule and polymer layer are synthesized (see image: SYNTHESIS) and their bio-catalytic activity was investigated at 50 oC (optimal temperature 37 oC). All products were stirred with 100 rpm and samples were withdrawn from time to time for standard activity measurements (ref. 1.) Findings: The results show that there is a significant difference between the stability of enzyme nanoparticles synthesized by different methods. CEN has the longest lifetime (about 1.7 hour even at 50 oC), when the enzyme:monomer ratio (E/M) during the synthesis is 1:33, but it is the shortest when E/M = 1:18. There is no significant difference between half-lives of E, IEN, vEN and CEN when E/M=1:18 (value is about 0.1 h in all of these cases) (See image: HEAT STABILITY). Conclusion & Significance: It seems that the minimal amount of E/M for synthesis of efficient product is about 1:30. This ratio results significant enhance of its half-lifetime (ca. 17 times). Enzymes stabilized by polymer layer with ionic and van der Waals interactions could not result in significant stabilization.

Biography :

Imre Hegedus has started his research activity at Department of Chemistry and Chemical Informatics, University of Szeged in 2003 and he studied quantum chemistry for modelling the optimal spatial structure of selenocysteine amino-acid. From 2005 he had worked at Research Institute of Biomolecular and Process Engineering at University of Pannonia (Veszprem, Hungary) where he has earned his PhD degree. His main research areas are synthesis and study of enzyme nanoparticles and he applied them as industrial biocatalysts as well as protein drug carriers. He has synthesized dendrimers for application them as drug carriers. Other drug carriers as protein nanoparticles, and nanoemulsions have also been synthesized. From 2020 he is working in Department of Biophysics and Radiation Biology in Semmelweis University, Budapest in the Nanobiotechnology and In Vivo Imaging Centre. His research interests lie in nanoparticle synthesis for clinical therapeutic and diagnostic PET/SPECT applications, and nanomaterial characterization, using atomic force microscopy.

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward