Gold and Diamond-bearing astropipes of mongolia (Neologism and new scientific discovery)

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Gold and Diamond-bearing astropipes of mongolia (Neologism and new scientific discovery)


July 17-18, 2017 Chicago, USA

D. Dorjnamjaa, B. Enkhbaatar, G. Altanshagai

Mongolian Academy of Sciences, Mongolia

Posters & Accepted Abstracts: J Material Sci Eng

Abstract :

In this paper we present summation of eighteen yearâ??s investigation of the all gold and diamond-bearing astropipes of Mongolia. Four astropipe structures are exemplified by the Agit Khangay (10 km in diameter, 470 38' N; 960 05' E), Khuree Mandal (D=11 km; 460 28' N; 980 25' E), Bayan Khuree (D=1 km; 440 06' N; 1090 36' E), and Tsenkher (D=7 km; 980 21' N; 430 36' E) astropipes of Mongolia. Detailed geological and gas-geochemical investigation of the astropipe structures show that diamond genesis is an expression of collision of the lithospheric mantle with the explosion process initiated in an impact collapse meteor crater. The term â??astropipesâ? (Dorjnamjaa et al., 2010, 2011) is a neologism and new scientific discovery in Earth science and these structures are unique in certain aspects. The Mongolian astropipes are genuine â??meteorite craterâ? structures but they also contain kimberlite diamonds and gold. Suevite-like rocks from the astropipes contain such minerals, as olivine, coesite, moissanite (0,6 mm), stishovite, coesite, kamacite,tektite, khamaravaevite (mineral of meteorite titanic carbon), graphite-2H, khondrite, picroilmenite, pyrope, phlogopite, khangaite (tektite glass, 1,0-3,0 mm in size), etc. Most panned samples and hand specimens contain fine diamonds with octahedrol habit (0, 2-2,19 mm, 6,4 mg or 0,034-0,1 carat) and gold (0,1-5 g/t). Of special interest is the large amount of the black magnetic balls (0,05-5,0 mm) are characterized by high content of Ti, Fe, Co, Ni, Cu, Mn, Mg, Cd, Ga, Cl, Al, Si, K. Meanwhile, shatter cones (size approx. 1.0 m) which are known from many meteorite craters on the Earth as being typical of impact craters were first described by us Khuree Mandal and Tsenkher astropipe structures. All the described meteorite craters posses reliable topographic, geological, mineralogical, geochemical, and aerospace mapping data, also some geophysical and petrological features (especially shock metamorphism) have been found, all of which indicate that these structures are a proven new type of gold-diamond-bearing impact structure, termed here â??astropipesâ?. The essence of the phenomenon is mantle manifestation and plume of a combined nuclear-magma-palingenesis interaction.

Biography :


Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

arrow_upward arrow_upward