GET THE APP

Elements of Chemical Reactions
..

Chemical Sciences Journal

ISSN: 2150-3494

Open Access

Perspective - (2021) Volume 12, Issue 8

Elements of Chemical Reactions

Natarajan K*
*Correspondence: Natarajan K, Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, India, Email:
Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, India

Received: 08-Aug-2021 Published: 29-Aug-2021 , DOI: 10.37421/2150-3494.21.12.247
Citation: Natarajan K. "Elements of Chemical Reactions". Chem Sci J 12 (2021): 247.
Copyright: © 2021 Natarajan K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Perspective

Chemical reaction is a process in which one or more substances, the reactants, are converted to one or more different substances, the products. Substances are either chemical elements or compounds. A chemical reaction rearranges the constituent atoms of the reactants to create different substances as products. Chemical reactions are an integral part of technology, of culture, and indeed of life itself. Burning fuels, smelting iron, making glass and pottery, brewing beer, and making wine and cheese are among many examples of activities incorporating chemical reactions that have been known and used for thousands of years. Chemical reactions abound in the geology of Earth, in the atmosphere and oceans, and in a vast array of complicated processes that occur in all living systems. Chemical reactions must be distinguished from physical changes. Physical changes include changes of state, such as ice melting to water and water evaporating to vapour. If a physical change occurs, the physical properties of a substance will change, but its chemical identity will remain the same. No matter what its physical state, water (H2O) is the same compound, with each molecule composed of two atoms of hydrogen and one atom of oxygen. However, if water, as ice, liquid, or vapour, encounters sodium metal (Na), the atoms will be redistributed to give the new substances molecular hydrogen (H2) and sodium hydroxide (NaOH). By this, we know that a chemical change or reaction has occurred. The concept of a chemical reaction dates back about 250 years. It had its origins in early experiments that classified substances as elements and compounds and in theories that explained these processes. Development of the concept of a chemical reaction had a primary role in defining the science of chemistry as it is known today. Chemical reactions such as combustion in fire, fermentation and the reduction of ores to metals were known since antiquity. Regarding the organic chemistry, it was long believed that compounds obtained from living organisms were too complex to be obtained synthetically. According to the concept of vitalism, organic matter was endowed with a "vital force" and distinguished from inorganic materials. This separation was ended however by the synthesis of urea from inorganic precursors by Friedrich Wohler in 1828. The substance (or substances) initially involved in a chemical reaction are called reactants or reagents. Chemical reactions are usually characterized by a chemical change, and they yield one or more products, which usually have properties different from the reactants. Reactions often consist of a sequence of individual sub-steps, the so-called elementary reactions, and the information on the precise course of action is part of the reaction mechanism. Chemical reactions are described with chemical equations, which symbolically present the starting materials, end products, and sometimes intermediate products and reaction conditions. Chemical reactions happen at a characteristic reaction rate at a given temperature and chemical concentration. Typically, reaction rates increase with increasing temperature because there is more thermal energy available to reach the activation energy necessary for breaking bonds between atoms. Reactions may proceed in the forward or reverse direction until they go to completion or reach equilibrium. Reactions that proceed in the forward direction to approach equilibrium are often described as spontaneous, requiring no input of free energy to go forward. Non-spontaneous reactions require input of free energy to go forward (examples include charging a battery by applying an external electrical power source, or photosynthesis driven by absorption of electromagnetic radiation in the form of sunlight). A reaction may be classified as redox in which oxidation and reduction occur or no redox in which there is no oxidation and reduction occurring. Most simple redox reactions may be classified as combination, decomposition, or single displacement reactions. Different chemical reactions are used during chemical synthesis in order to obtain a desired product. In biochemistry, a consecutive series of chemical reactions (where the product of one reaction is the reactant of the next reaction) form metabolic pathways. These reactions are often catalyzed by protein enzymes. Enzymes increase the rates of biochemical reactions, so that metabolic syntheses and decompositions impossible under ordinary conditions can occur at the temperatures and concentrations present within a cell. Chemical reactions are central to chemical engineering where they are used for the synthesis of new compounds from natural raw materials such as petroleum and mineral ores. It is essential to make the reaction as efficient as possible, maximizing the yield and minimizing the amount of reagents, energy inputs and waste. Catalysts are especially helpful for reducing the energy required for the reaction and increasing its reaction rate. Some specific reactions have their niche applications. For example, the thermite reaction is used to generate light and heat in pyrotechnics and welding. Although it is less controllable than the more conventional oxy-fuel welding, arc welding and flash welding, it requires much less equipment and is still used to mend rails, especially in remote areas.

Google Scholar citation report
Citations: 912

Chemical Sciences Journal received 912 citations as per Google Scholar report

Chemical Sciences Journal peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward