Journal of Nanosciences: Current Research

ISSN: 2572-0813

Open Access

Current Issue

32nd Nano Congress for Future Advancements (2020)

    Value Added Abstracts Pages: 1 - 1

    Past Conference Editorial of Nano Congress 2020

    Jianqi Zhang

    The 31st Nano Congress for Future Advancements hosted by Conference Series LLC was successfully held during June 12-13, 2020 as a Webinar and was marked with the presence of the committee members, senior scientists, young and brilliant researchers, business delegates and talented students from various countries, who made this conference successful and productive.

    We extend our grateful thanks to all the momentous speakers, conference attendees who contributed towards the successful run of the conference

    Nano Congress 2020 witnessed an amalgamation of peerless speakers who enlightened the crowd with their knowledge and confabulated on various latest and exciting innovations in all areas of Nanotechnology.

    Nano Congress Organizing Committee extends its gratitude and congratulates the Honorable Moderators of the conference.

    Conference Series LLC Ltd extends its warm gratitude to all the Honorable Guests and Keynote Speakers of “Nano Congress 2020”.

    • Jianqi Zhang, Inner Mongolia University of Science and Technology, China
    • Nancy Healy, Georgia Institute of Technology, USA  

    Conference Series LLC Ltd is privileged to felicitate Nano Congress 2020 Organizing Committee, Keynote Speakers, Chairs & Co-Chairs and the Moderators of the conference whose support and efforts made the conference to move on the path of success. Conference Series LLC LTD thanks every individual participant for the enormous exquisite response. This inspires us to continue organizing events and conferences for further research in the field of Nanotechnology

    Conference Series LLC Ltd is glad to announce its “33rd Nano Congress for Future Advancements, which will be held during April 12-13, 2021 at London, UK. We cordially welcome all the eminent researchers, Presidents, CEO’s, Nanotechnology scientists and researchers in Nano sectors, Delegates to take part in this upcoming conference to witness invaluable scientific discussions and contribute to the future innovations in the field of Nanotechnology with 20% abatement on the Early Bird Prices.

    Bookmark your dates for “Nano Congress 2021, London” as the Nominations for Best Poster Awards and Young Researcher Awards are open across the world.

    Value Added Abstracts Pages: 2 - 2

    Oxygen Storage Behavior of Nanoparticulated Pr1-xZrxO2-?

    Jianqi Zhang

    Pr1-xZrxO2-δ (x=0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9 and 1) nanoparticles were synthesized by ultra-sound assisted coprecipitation. The crystalline structure, morphology and composition of the fresh prepared and thermally aged nanoparticles were analyzed by XRD, TEM and Raman spectroscopy. The oxygen storage capability (OSC) and thermal durability were examined by temperature programmed reduction (TPR). The oxygen storage and transport mechanism were evaluated using electrochemical impedance spectroscopy (EIS) by correlating electrical conductance with lattice defects. The results indicate that Pr1-xZrxO2-δ nanocrystallized particles exhibit fluorite structured except ZrO2 nanoparticles with a typical tetragonal structure. The oxygen storage and release capability of both fresh prepared and thermally aged Pr1-xZrxO2-δ increases monotonously with increment of Pr concentration (or decrease in Zr) to a maximum value of 1200 [μmol/g] that corresponds to PrO1.833 (Pr6O11), indicating their superior OSC and thermal durability. Unlike conventional Ce1-xZrxO2-δ promoters, the oxygen storage, release and transport of Pr1-xZrxO2-δ nanocrylline solid solutions accompanies with a homologous series of phase transformations by the change in lattice defects of oxygen interstitials, electron holes and Pr3+ cations. Compared to Ce1-xZrxO2-δ, Pr1-xZrxO2-δ presents better OSC (x≤0.4), thermal durability and a different mechanism on oxygen storage and transportation. This study manifests that Pr1-xZrxO2-δ (x≤0.4) solid solutions can be used as better promoters for the three way catalysts (TWC) in lieu of Ce1-xZrxO2-δ.

    Value Added Abstracts Pages: 3 - 3

    How Nanotechnology in the Food Industry Could Fight Against Covid-19?

    Carla Palencia-Aguilar

    Nanotechnology in the food industry could be used to fight against Covid-19 in three ways: 1.It can increase the immunological system because the process implemented herein concentrates vitamins, minerals, fiber, proteins, among others. 2. The products can be preserved for periods longer than 2 years without adding any chemicals. 3. The virus within the product will disappear because the molecular sieves are smaller than the virus (10-10 versus 10-9), and during the dehydration process, if Covid-19 is present in the unprocessed product, during dehydration, the molecular sieves and biopolymers will allow the virus to attach to their surface, thereafter, it is destroyed in the regeneration process when the sieves and biopolymers are placed in an oven at temperatures higher than 250oC. The molecular sieves and biopolymers are used as filters inside a vacuum chamber; temperature and pressure changes tuning, by trial and error until the desired characteristics are obtained are required to fulfill the process. Other advantages include: the system does not use any contaminant substances during the drying process, colour and smells are preserved and concentrated; the discharge is only limited to water vapour. More than 1000 products had been tested over a 12 years’ research. In addition, sub-products development could result from the recovery of wasted material such as toothpaste and calcium pills from egg shells, cosmetics from mangostine and shrimp peels, bromelain from pineapple stems, among others. Whenever sub-products’ development is not possible, the waste could be used for soil improvement by means of composting.

    Value Added Abstracts Pages: 4 - 4

    The Efficiency of TiO2 Nanoparticles Synthesized from Aloe Vera Leaves Extract Compared to Liposomes as Delivery System for Doxorubicin: In Vivo Study Using Erlich Solid Tumor Model

    Doaa A. Abdelfadeel

    Doxorubicin (Dox) is well known for its broad spectrum anticancer activity; however it suffers from severe toxicity. The primary goal of loading Dox in different nanodelivery systems is to decrease nonspecific organ toxicity.

    Dox encapsulated liposome (Doxil) has been approved by FDA for ovarian cancer and Kaposi's sarcoma treatment in United States. However, the researchers are still going on to optimize the liposomes and to compare them to other types of nanoparticles.

    Titanium dioxide nanoparticles (TiO2NPs) have been the focus of many promising applications due to their unique properties, low cost, availability and biocompatibility. This study illustrates a simple, safe, low cost and ecofriendly technique for green synthesis of TiO2NPs from Aloe Vera leaves extract at different pH values. Doxorubicin was loaded in liposomes and conjugated to greenly synthesized TiO2NPs. Both formulas were fully characterized then they have been injected in mice bearing Ehrlich tumor and compared to aquous solution of Dox.Tumor volume measurments and histopathological examinationwere conducted. The results reveled that both formula of Dox were more efficient than aqueous Dox solution, however, Dox encapsulated in liposomes showed more efficiency in treatment of tumor.

    Value Added Abstracts Pages: 5 - 5

    Development of a Method for Industrial Production of Plga Nanoparticles with Quality by Design (qbd) Approach

    Esma Nur Develi

    Poly-lactide-co-glycolic acid (PLGA) nanoparticles (NPs), which are named as gold standard FDA, are conventionally produced using different methods none of which are suitable for industrial production. O/w or w/o/w emulsification process is the most common method, in which removal of the organic solvent needs an evaporation process in R.T. Furthermore this process needs employing toxic excipients to emulsify the organic phase in aqueous media which are not applicable in production of PLGA NPs in bulk scale.   

    Microfluidizer instruments (MF) with the principle of homogenization at high pressure, are very convenient devices for industrial production of ‘self-assembly, systems, including PLGA NPs. In the present study, PLGA NPs were synthesized using MF while the formulation parameters were optimized by application of Quality by Design (QbD) approach.

    In the Central Composite Design (CCD) used for the optimization of PLGA NPs the variable parameters of MF were processing pressure and number of passes, while the formulation variables were PLGA amount (mg) and Tween80 amount (mg). 60 formulations were designed and the optimized formulation was chosen according to the responses including small particle size (PS), high zeta potential (ZP) and narrow Poly Dispercity Index (PDI). The o/w emulsion was prepared using a simple mechanical stirrer prior to MF process and the organic solvent (acetone) was evaporated using spray dryer.  

    In this study curcumin was used as active ingredient encapsulated in PLGA nano-micelles. As a result injectable, (PS less than 200 nm) and stable (ZP higher than -25 mv) PLGA NPs were obtained with a narrow PDI value (less than 0.2).

    Value Added Abstracts Pages: 6 - 6

    The Biological Activities of NiS Nanoparticles and NiS/PEG Nanocomposites from Primary Amines

    Felicia F. Bobinihi

    The increase in the outbreak of new infectious diseases coupled with the increase in drug resistance pathogens have aroused the interest of chemists in the quest for new and effective compounds with improved pharmacological potentials. The recent pandemic ravaging the whole World called corona virus disease (COVID-19) is a typical example. It is proposed that antibiotics, anti-inflamatories and anticoagulants are the way forward to fight this dreadly virus because it is suspected from autopsies to be disseminated intravascular coagulation (Thrombosis) Nickel as an essential element for biological systems is very relevant in the search for novel compounds against infectious and drug resistance diseases and development of metal based pharmaceuticals and so, is very useful in the preparation of antibiotics. This work explores the versatility of dithiocarbamate complexes of Ni metal from different primary amines. The biological activities of the prepared nanoparticles were studied, and incorporated as nanosize particles in the matrices of Poly Ethylene Glycol (PEG) materials as nanocomposites to determine the improved activities over the bulk complexes based on the small size dimensions and nanoparticle drug delivery system. The slight alteration in their structures lead to great quantitative and qualitative changes in their activities which was observed in the metal sulphides obtained as they yielded anisiotropic nanoparticles. These changes could be ascribed to differences in the decomposition profile in the solvothermal process used for the nanoparticles synthesis. The different nanoparticles displayed interesting optical and structural properties, which are dependent on their morphology with a decrease in the average size as the chain length of the substituent increased . An increased in antibacterial and antifungal activities was also observed.

    Value Added Abstracts Pages: 7 - 7

    The Convergence of Technologies, Generates Convergence in the Regulations

    Guillermo Valdes Mesa

    The convergence of nanotechnologies generates synergies among different technologies to say, nanotechnologies, neurotechnology, computers and biotechnology, these technologies must converge) itchier regulations, the application of medical devices in nanotechnologies should lead us to a link between the technical committee TC 210 and ISO technical committee 229 link that does not exist in our work in this moment In this do an analysis of the management of risk from an optical NC-ISO 14971 ). Studying the global trend in this respect as imported for manufacturers medical Devices worldwide. The convergences of technologies are a consequence of atomic precision, where the boundary between the biotic and abiotic mute blur the interaction. The interaction between nanotechnologies, biotechnology and informatics and communications (NBI) generates a synergy of unusual consequences of all is known that the industry of semiconductor)s is the one of greater precision that is atomic, the new medical devices that will be applied in the teranocis will dose Physical principles that will be governed under the laws of quantum mechanicsbut there are two problems that have not been solved even though they are one the non-existence of quantum biology and the transition from quantum to classical mechanics. On the other hand, the redefinition of the international system of units based on the universal constants that will be implemented by 2019 has a deficiency that is the second that redefirms implies redefinition of the meter the chain of traceability proposed for nanometrology presents a serious difficulty when putting the microcopy of atomic force wing of effect  tunnel situation that is changing the verification of the Wiedemann-Franz law at atomic level yields a result where the phononic component is taken into account, a result that launches STM to the cusp of the chain of traceability above inclusive of interferometry.

    Value Added Abstracts Pages: 8 - 8

    A Comparative Study of Liver Cancer Treatment Methods Using Thermal Ablation Versus Gold Nanoparticle Therapy

    Ibtihag Yahya

    One of the most complex problems over the past decades is clinically approved cancer treatment methods because of the conventional methods side effects such as radiation, chemotherapy, and some medication. Correspondingly, in recent years and since 2010, the diagnosis and treatment of cancer have taken a great deal of interest, especially in the field of designing and developments of inorganic nanoparticles because of its unique properties such as thermal heating ability, surface functionalization, surface plasmon, absorption, and scattering properties. This study aims to compare strategies for using thermal therapy versus gold nanoparticles therapy. COMSOL Multiphysics was used to model both techniques by using electric current and bioheat transfer modules for ablation method and heat transfer in solid module for the gold nanoparticles method to treat a cancerous tumor that was discovered in the liver. This study's results of this computational modeling proved that using gold nanoparticles was examine the effectiveness of these particles as a heat source for hyperthermia in liver cancer therapy without affecting the surrounding natural tissue and damage it. This method can overcome the challenges faced by the ablation treatment method, such as hyperthermia and the inability to heat cancer cells locally and thus, limiting the heat within the tumor circumference very complex and difficult which is affecting the surrounding natural tissue and damage it. In conclusion, COMSOL Multiphysics was a very useful platform for modeling the hyperthermia treatment for cancerous cells necrosis over time.

    Value Added Abstracts Pages: 9 - 10

    Photochemical Reactions in the Irradiated Poly (para- substituted styrene) in Solid Films and in Solutions

    Khalid E. Al Ani

    In the last few years, much attention has been focused on research to prepare new generation of Poly (para – substituted styrene), and to study the irradiation, thermal and plasticization effects on stability of these new polymers. The photodegradation of irradiated solid films was studied by using UV – Visible, Fluorescence, FT - IR and TLC spectroscopic techniques. Irradiated pure and blended Poly (para – substituted styrene) solid films showed a gradual increase in the absorption intensity of the main band with the increase in the amount of blended plasticizers and increase in the irradiation time as well as the formation of new bands at longer wavelengths. The fluorescence spectra of irradiated polymers in solid films and in solutions of different polarity, showed a deformation in the fluorescence main band and the appearance of new bands at longer wavelengths, indication the distraction of polymer chains and the formation of new photo products through the formation of free radical reactions. The FT – IR spectra of irradiated pure and blended solid films, showed an increase or decrease of the polymer vibration frequencies, as well as a changes in numerous inferred bands intensities. The increase in the intensities of the analyzed ranges is attributed to the formation of carbonyl, hydroxyl, and aliphatic ketones and to the increase in the number of polyene structures that resulted from hydrogen abstraction during photodegradation reactions. The analysis of the Fourier-transform infrared spectra of the irradiated and nonirradiated samples showed a noticeable formation of a new broad band centered at (1,727 cm−1, C=O), assigned to the growth of aliphatic ketones formerly from the reaction of reactive alkoxy radicals. Its intensity was found to increase with the increase in irradiation time and also with the increase in the amount of added Terephthalate and phthalates plasticizer, indicating an increase in the efficiency of the photo degradation process. The analysis of fragments that resulted from the photo irradiation samples of PSP in solution, using electrospray ionization-ion trap (ESI). Where the separation and determination of the fragments which resulted from degraded polymer were studied by LC–ESI-MS in positive mode, and gave the best specificity and sensitivity for their detection. The positive ion (ESI-MS) spectra showed five main peaks of the total ion chromatogram (TIC). All the compounds that were resulted from the photodegradation of the irradiate polymer solution gave the protonated molecules [M + H+] after ionization in the electro spray source. The fragmentation ions showed the formation of monomer, dimmer and oxygenated organic compounds. Some kinetics work was applied to the results on fluorescence intensity of the excimeric emission to evaluate the quenching efficiencies and photo quenching rate constant by applying Al Ani – Hawi equation. Electrophilic substitution such as (Cl, and Br) in the para position of the polymer backbone should less stability towards UV – Irradiation, whereas, necluophilic substitution such as ( - H, -CH3, -OCH3, -OC2H5, -C6H5, α – CH3, α –OCH3, Phenyl and – C (CH3)4 should higher stability towards irradiation of plasticization. Among the para-substituted polystyrene, Poly (4- fluorostyrene) should a very high stability towards irradiation and plasticization that all polymers used in these studies. It is even more stable than polystyrene, The mechanism of the photodegradation of these irradiated polymers was found to started from abstraction of α – hydrogen atom from the phenyl group followed by a random chain scission in the polymer backbone. Proposed mechanism for the photodegradation of para-substituted styrene in solid films and in solution was based on the decrease or increase in the functional groups that appears from the FT – IR spectra of irradiated solid films.

    Value Added Abstracts Pages: 11 - 11

    Advances in Biomemisis of Nano Materials and its application

    Madhavi Swamy

    Biomimesis is the science that incorporates or mimics the model; structure and working of nature.The working mechanisms of natural elements such as efficiency, durability, adaptability and self-healing capability have always intrigued designers and engineers. This scientific integration has been useful in solving complex real life problems mainly self-repairing abilities, multifunctional coatings, environmental exposure tolerance and resistance, energy crisis, etc. By studying this art of life we can enhance the working of our existing mechanical modules. For instance, maple seeds use aerodynamic principles to disperse themselves into the wind over long distances, they rotate while falling off and eventually this spin stabilises the descent even under the influence of strong wind velocities. The centre of gravity of the wing shaped seed is determined by the positioning of the heavy nut located at the base, which helps in maintaining a lift even with slow velocity. This technique has been used in developing helicopter blades, gliders, aircrafts and drones. Despite the technological advancements in the field of science, engineers and scientists are having difficulty in solving complex engineering and survival problems. Innovating with Bio inspired solutions will help us not only to solve such problems but also to address the concerns of climate change. This paper reviews the existing technologies used in biologically synthesizing the nanomaterials and their highly efficient properties. A thorough report on various categories of biomimetics will also be studied

    Value Added Abstracts Pages: 12 - 12

    Protective Effects of Free Curcumin and Its Nanoparticles on Diethylnitrosamine-Induced Hepatocellular Carcinoma in Murine Model

    Marwa Hassan

    Curcumin, a natural compound present in turmeric, has a potential aptitude to suppress carcinogenesis in pre-clinical models. However, its therapeutic applications are constrained by its prominent metabolic instability as well as inadequate absorption. The current study was designed to enhance the curcumin bioavailability by exploiting the drug delivery systems; nanoparticles. Eleven groups of mice with six animals in each group were divided into: control group, hepatocellular carcinoma (HCC) group induced by diethylnitrosamine (DEN) injection, 2 groups treated with DEN plus high dose (50 mg/kg) and low dose (10 mg/kg) of free curcumin, 2 groups treated with high and low dose of free curcumin, nanoparticles control group, 2 groups treated with DEN plus high dose (3.3 mg/kg) and low dose (0.6 mg/kg) of nanoparticulate curcumin, and 2 groups treated with high and low dose of nanoparticulate curcumin. It was found that DEN administration significantly increased serum liver enzymes, VEGF, TNF-α, AFP, MDA, and NF-kB. Also, it decreased serum albumin and tissue antioxidant activities and caused severe histological changes in hepatic tissue. Oral treatment of DEN-injected mice with either high dose of free curcumin or the two tested doses of nanoparticulate curcumin resulted in a significant improvement of all the tested parameters and the histopathology of liver tissue. In conclusion, our results showed that the high dose of free curcumin and the two doses of nanoparticulate curcumin were effective in preventing DEN-induced HCC indicating that the nanoparticles improved curcumin bioavailability as they were effective in preventing HCC despite their enormouslylowdoses.

    Value Added Abstracts Pages: 13 - 13

    The National Nanotechnology Coordinated Infrastructure and its Role in Meeting the Workforce Nanotechnology Demands in the US

    Nancy Healy

    The United States has invested heavily in nanoscale science and engineering over the last 20 years. In 2001, the National Nanotechnology Initiative (NNI) was established and was reauthorized in 2003 by the 21st Century Nanotechnology Research and Development Act. Over this period, the US has supported Nanotechnology R&D and education with $29 billion in support. As part of the nano R&D, the National Science Foundation established nationwide user facilities beginning in 1997 the the National Nanotechnology User Network (NNUN) and which is represented by the 16 site National Nanotechnology Coordinated Infrastructure (NNCI). In addition to supporting nanoscale research, these user facilities have also developed numerous education programs to help address the NNI’s Strategic Plan Goal #3: Develop and sustain educational resources, a skilled workforce, and a dynamic infrastructure. This presentation will discuss strategies that have been successful in developing a workforce pipeline from K through gray under the NSF-funded user facilities, especially those of NNCI. No discussion of nanotechnology education and workforce development would be complete without reference to the National Science Foundation funding of numerous nanotechnology education programs focusing on developing a nano-enabled workforce and an educated public that supports the safe development of nanotechnologies. This presentation will present examples of successful programs that have had nationwide impact not just under the NNUN - NNCI continuum but also other programs such as the Nanotechnology Applications and Career Knowledge program at Pennsylvania State University and the now sun-setted Nanoscale Informal Science Education Network.

    Value Added Abstracts Pages: 14 - 14

    Future Advancements ? Where will the Workforce Come from to Meet Future Nanotechnology R&D Needs?

    Nancy Healy

    Nanoscale science and engineering has advanced over the last decade at a very rapid pace. NanoCongress 2020 is addressing future advances in nanotechnology over a wide range of nano topics yet one “future area” is minimally addressed at this conference, and missing from most other nanofocused conferences e.g., - the future workforce needed to keep pace with this field’s growth. It has been estimated that by 2020 nanotechnology will need 2 million workers worldwide with another five million in supporting roles. Rocco and Bainbridge (2016) also ask: “What are the most pressing research and education issues? How can we develop a transforming national strategy to enhance individual capabilities and overall societal outcomes?” This presentation will discuss strategies that have been successful in developing a workforce pipeline from K through gray. In the US, the National Science Foundation has funded numerous nanotechnology education programs focusing on developing a nanoenabled workforce and an educated public that supports the safe development of nanotechnologies. This presentation will present examples of successful programs such as our Research Experience for Undergraduates. This program’s participants are part of a longitudinal study spanning back to 1997 and encompassing ~1500 students. Over half of these interns are in nanotechnology related fields and 90% in STEM. Some of these students have participated in a second year international program to develop globally aware researchers. To continue to be successful in creating and maintaining a nano-workforce it will be necessary to have joint efforts of academia, industry, and government.

    Value Added Abstracts Pages: 15 - 15

    Synthesis of hybrid nanoparticles via aerosol photopolymerization

    Narmin Suvarli

    Present work is focused on producing polymeric nanoparticles using aerosol photopolymerization – an eco-efficient, surfactant-free and continuous polymerization process with immediate formation of radicals without the need for heating. This technique is a good alternative to water-based emulsion polymerization processes towards the synthesis of spherical polymeric nanoparticles and nanocapsules, as well as nanostructured particles. In addition, the aerosol photopolymerization process has been used to produce organic-inorganic spherical nanocomposites (ZnO nanoparticles inside a polymeric matrix). The recent project is concentrated on adjusting this technique to produce polymeric hybrid nanoparticles with tunable diameter via thiol-ene polymerization. Advantages of thiol-ene chemistry (i.e. radical initiation, step-growth mechanism, fast polymerization, consumption of all monomers) are used to produce spherical polymeric nanoparticles with silver or gold nanoparticles inside. These hybrid nanoparticles can be an effective tool for cancer diagnostics and treatment.

    The process follows an elementary protocol. A spray solution containing silver nanoparticles of chosen size, monomers (thiol and alkene), photoinitiator and the volatile organic solvent was atomized using commercially available pneumatic aerosol generators forming a droplet aerosol. Droplets were polymerized during the passage through photoreactor and converted into silver nanoparticles encapsulated into a polymeric network. Collected nanoparticles were functionalized with biomolecules using conjugation techniques for further means of application.

    Value Added Abstracts Pages: 16 - 16

    The Effects of PLGA-Curcumin Nano-Formulation on the Levels of Nf Kappa B Sub-Units in Cancer Cell Lines

    Seyma Bulut

    In addition to the toxic effects of cancer chemotherapeutics on healthy cells, it is important to increase the effectiveness of these drugs by means of pro-oxidant polyphenols especially by considering their costly price in clinical use. Polylactic-co-glycocolic acid (PLGA), the most used one among polymeric materials, is a biomaterial commonly used in new drug delivery systems and approved by the FDA. In many studies, safety and efficacy of curcumin in prevention and treatment of cancer has been emphasized. NF-kB; is a transcription factor in regulation of many genes which are responsible of inflammation, immune response, proliferation and apoptosis. The increase in the level of reactive oxygen species due to stress affects the NF-kB transcription factor in the cell. A better understanding of the NF-kB structure and mechanism of action will play an important role in the reduction of cellular stress and hence the emergence of new approaches and mechanisms of action in eliminating the negative effects of stress. The investigation of the effect of PLGA-Curcumin Nano-formulation (Nano Curc) on the level of NF-kB subunits in cancer cells were investigated in this study.

    The effect of Nano-Curc on the ratios of four sub-units of NF-kB including P65, P52, P50 and C-Rel were evaluated on MCF-7 breast cancer cell lines which were pre-treated with paclitaxel. P65 was the most supressed sub-unit by Nano-Curc which could be counted as the success of this nano formulation in decrease of inflammation at cancer tumor.

    Value Added Abstracts Pages: 17 - 17

    The Modification of Einsteins DMR Relation in Quantum Wire Super Lattices (QWSL) and Study of Shubnikov De Hass Effect in Parabolic Semiconductors: Simplified Theory and Suggestions for Further Experimental Determination in Biomaterials

    Sudip Chatterjee

    The semiconductor super lattices (SLS) and nano wires have found wide applications in many electronic device structures and bio devices such as photo detectors, light emitters, avalanche photo diodes, compensatory transistors, tunneling devices, genetic diodes etc. The most extensively studied SL is the one consisting of alternate layers of GaAs and Ga1-xAlxAs, owing to its fabrication. The GaAs layers form the quantum wells, quantum dots, quantum wires and the Ga1-xAlxAs layers form the potential barriers. We wish to note that, the afore mentioned SLS have been proposed with the assumption that the interfaces between the layers are sharply defined with zero thicknesses so as to be devoid of any interface effects. As the potential form changes from a well (barrier) to a barrier (well), an intermediate potential region exists for the electrons. Thus the influence of the finite thickness of the interface on the carrier dispersion law becomes very important since, the carrier energy spectrum governs all the transport properties. In this paper, we shall investigate the DMR for the most interesting case which occurs in QWSLs of graded interfaces and compare the same with that of the constituent materials by formulating the respective one dimensional electron dispersion laws.

    The above mentioned inversion layer (ILs) also produces the well-studied Shubnikov de has effect in different nano structured materials and have been found wide applications in the molecular and cell biology.

    10th World Congress on Biopolymers & Bioplastics (2020)

      Value Added Abstracts Pages: 1 - 1

      Past Conference Editorial of Biopolymers 2020

      NG Kwan

      Conference Series LLC Ltd hosted the “Biopolymers”, during August 03-04, 2020 at Zurich, Switzerland with the theme, “Solution for current & future global challenges Biopolymers 2020”, which was a great success. Eminent keynote speakers from various reputed institutions and organizations addressed the gathering with their resplendent presence.

      We extend our grateful thanks to all the momentous speakers, conference attendees who contributed towards the successful run of the conference.

      Biopolymers 2020 witnessed an amalgamation of peerless speakers who enlightened the crowd with their knowledge and confabulated on various latest and exciting innovations in all areas of Synthetic polymers and Organic polymers.

      Biopolymers Organizing Committee extends its gratitude and congratulates the Honorable Moderators of the conference.

      Conference Series LLC Ltd extends its warm gratitude to all the Honorable Guests and Keynote Speakers of “Biopolymers 2020”.

      • NG Kwan, RMIT University, Australia.

      Conference Series LLC Ltd is privileged to felicitate Biopolymers 2020 Organizing Committee, Keynote Speakers, Chairs & Co-Chairs and the Moderators of the conference whose support and efforts made the conference to move on the path of success. Conference Series LLC LTD thanks every individual participant for the enormous exquisite response. This inspires us to continue organizing events and conferences for further research in the field of Organic polymers and Natural polymers.

      Conference Series LLC Ltd is glad to announce its “11th World Congress on Biopolymers & Bioplastics. We cordially welcome all the eminent researchers, Natural polymers ,Organic polymers, polymer Associations, Biopolymer Researchers, Polymer Industry, polymer Scientists, polymer Engineers, polymer technology Engineers, Chemical Engineers, Biopolymer Organizations and Associations, Biopolymer companies, students and delegates to take part in this upcoming conference to witness invaluable scientific discussions and contribute to the future innovations in the field of Biopolymers with 20% abatement on the Early Bird Prices.

      Bookmark your dates for “Biopolymers 2021” as the Nominations for Best Poster Awards and Young Researcher Awards are open across the world.

      Value Added Abstracts Pages: 2 - 2

      Carbon-based Nano Electro-Mechanical Systems

      Abeer Abdullah Al Anazi

      Nano Electro-Mechanical Systems (NEMS) integrate critical structural electrical and mechanical elements at or below 100 nm. This is miniaturization of the Micro Electro-Mechanical Systems (MEMS), where the critical structural elements are on the micrometer length scale. Compared to MEMS, NEMS have smaller mass and higher surface area to volume ratio, which is advantageous for applications in manufacturing high frequency resonators and ultrasensitive sensors. Due to the promising potential applications of the emerging NEMS that is expected to have a major impact on our lives, research on NEMS reliability has been of crucial importance on the last decade. Aiming to provide an intuition and insight for researchers who are interested in reliability studies of NEMS, an extensive collection of researches were selected and integrated into this paper to cover the reliability issues of NEMS in different phases of their life cycles including design, manufacturing, logistics, and operation. The paper discusses failure causes on the nano-scales due mechanical, electrical, chemical, thermal factors, or combinations of them, which can occur during manufacturing and post-manufacturing phases. It also reviews common failure modes and mechanisms, the reliability aspects of design and manufacturing, as well as reliability evaluation and testing techniques for NEMS..

      Value Added Abstracts Pages: 3 - 4

      Inorganic charge transport materials for hybrid perovskite solar cells

      Kalpana Deevi1 and I.V Subba Reddy2

      organic–inorganic metal halide perovskite materials are the new class of hybrid semiconductors with the general formula ABX3, where ‘A’ and ‘B’ are organic and inorganic cations and ‘X’ (Cl, Br and I) is the halide anion, respectively. The exceptional physical properties of hybrid perovskite materials like a tuneable band, high absorption coefficient, and long-range charge transport with high mobilities have brought about a surge of interest in the optoelectronic device community to seek hybrid perovskite materials as potential candidates for solar cell fabrication.  A typical hybrid perovskite solar cell (PSC) device consists of the following six layers:

      (i) FTO (fluorine-doped tin oxide) as transparent electrode,

      (ii) c-TiO2 as electron transport material (ETM), which can additionally block the hole from reaching FTO,

      (iii) Mesoporous TiO2 (mp-TiO2) to infiltrate light harvester and to extract electrons from it,

      (iv) Hybrid perovskite material as light harvester,

      (v) Hole transport material (HTM) to extract holes from perovskite and

      (vi) Metal Au as back electrode.

      The currently used HTM, Spiro-OMe-TAD slowly degrades the perovskite and also the material’s cost is significant. The alternative organic HTM is PEDOT:PSS which also has the stability challenges in ambient conditions. Therefore, there is a need to find a stable HTM. In terms of improved stability at low cost use of inorganic materials as HTM is a good choice.

      In this current work, nanoparticles of inorganic oxide material, NiO is synthesized and characterized XRD and SEM, TEM to confirm the phase purity and morphology, respectively carry out the structural and microstructural characterization.  Low temperature annealed Ni1-xO appears black in colour and absorbs a fraction of light in the visible region. With high temperature annealing optically transparent near stoichiometric NiO nanoparticles are obtained with a direct band gap of 3.81 eV. For the transparent near stoichiometric NiO nanoparticles a complete energy band diagram is determined and realized a suitable valence band edge to fabricated hybrid perovskite solar cells. By employing as prepared optically transparent NiO as HTM working semi-transparent perovskite solar cells are  fabricated with a demonstrated photo conversion efficiency of 3.46%.

      Value Added Abstracts Pages: 5 - 5

      Interaction of corrosion-induced hydrogen with nascent defects in steel under neutron irradiation

      Evgenii Krasikov

      As the service life of an operating nuclear power plant (NPP) increases, the potential misunderstanding of the degradation of aging components must receive more attention. Integrity assurance analysis contributes to the effective maintenance of adequate plant safety margins.

      In essence, the reactor pressure vessel (RPV) is the key structural component of the NPP that determines the lifetime of nuclear power plants. Environmentally induced cracking in the stainless steel corrosion-preventing cladding of RPV’s has been recognized to be one of the technical problems in the maintenance of light-water reactors. Therefore, in the case of cladding failure, the problem arises of hydrogen (as a corrosion product) embrittlement of irradiated RPV steel because of exposure to the coolant.

      The effects of neutron fluence and irradiation temperature on steel/hydrogen interactions (adsorption, desorption, diffusion, mechanical properties at different loading velocities, post-irradiation annealing) were studied. Experiments clearly reveal that the higher the neutron fluence and the lower the irradiation temperature, the more hydrogen-radiation defects occur, with corresponding effects on the RPV steel mechanical properties.

      Hydrogen accumulation analyses and thermal desorption investigations were performed to prove the evidence of hydrogen trapping at irradiation defects. Extremely high susceptibility to hydrogen embrittlement was observed with specimens which had been irradiated at relatively low temperature. However, the susceptibility decreases with increasing irradiation temperature. To evaluate methods for the RPV’s residual lifetime evaluation and prediction, more work should be done on the irradiated metal–hydrogen interaction in order to monitor more reliably the status of RPV materials.

      Value Added Abstracts Pages: 6 - 6

      Polymeric stabilization of a calcium sulfate particle produced by 3D printing for bone regeneration applications

      Ignacia A Cancino

      Bone defects remain an important clinical challenge to medical staff. When bigger bone defects are present, there is a need for placing a scaffold, so that cells can grow and differentiate [1]. Today, different types of bone grafts exist, and depending on its source, they can be natural or synthetic. Synthetic grafts (alloplastic) are ceramics widely available and with lower costs than natural bone grafts (autografts and xenografts) [2]. To allow bone regeneration, the bone graft should possess, among other things, porosity and mechanical properties similar to bone structures [3,4]. For these reasons, a calcium sulfate particle was designed with a geodesic semi-sphere and microporous shape and produced using binder jetting [5] technology. The particle’s shape allows its 3D stabilization creating free spaces so that bone regeneration can occur.

      Considering all of the above, the particles were additionally processed so that they can increase their mechanical properties (elastic modulus and ultimate compressive strength), and decrease their solubility in physiological conditions for their use as bone grafts. This was done by impregnating the particles after they were heated at 200ºC for 10 min, with a biocompatible polymer. The results show that, the particles were able to keep their shape after being washed with physiological buffer at 37ºC and they increased 78 times their young modulus in average and and 45 times its ultimate compressive strength. Further tests need to be performed to have statistically robust results.

      Value Added Abstracts Pages: 7 - 7

      Polymeric stabilization of a calcium sulfate particle produced by 3D printing for bone regeneration applications.

      Imran Azmana, Jitima Preechawonga, Pornsri Sapsrithong and Manit Nithitanakul

      This research explored on a new path of preparation the porous material by using combination of water in oil emulsion templating along with the supplementary of low intensity polymerization reaction. Poly(styrene/ethylene glycol dimethylacrylate)HIPEs were prepared by using a domestic microwave for fabricating the multiscale porosity material. The radical polymerization reaction was precursor at the lowest intensity of 10 watt resulted with prognosticated result towards the surface topography of poly(sty/edgma)HIPEs as the monomer and crosslinker respectively. The ratios of water and oil phase were varied with the constant concentration of crosslinker and stabilizer. The different in the oil phase resulting to the gradually increment of the pores size from 60.2 ?m, 95.4 ?m and 126.3 ?m. Varying of the aqueous phase at 80%, 90% 92% and 94% with 2 wt% of surfactant showed n growing level of pore interconnectivity from 60.2 ?m to 109.9 ?m. Cellular morphologies of poly(sty/edgma)HIPEs were observed by using FE-SEM. In addition, to approbate the crosslinked poly(sty/edgma), ATR-FTIR were employed. It displays a distinct narrow peak around 770 cm-1 which explains the C-H stretching between the aromatic planar of styrene and carboxyl group of edgma. A preliminary result of absorption test was recorded for discovering the potential of poly(sty/edgma)HIPEs towards the dye absorption. Poly(sty/edgma)HIPEs with  90% volume of oil phase ratio were tested with varied concentration (g/cm3) of methylene blue and orange. It were appraised a positive results of dyes captivation in between of a week period. Poly(sty/edgma)HIPEs were furthered investigated by TGA/DSC and compression test.

      Value Added Abstracts Pages: 8 - 9

      Influence of different treatments of aspen wood particles on their compatibility with polymer matrix in wood-polymer composites.

      Jevgenijs Jaunslavietis, Galia Shulga, Juris Ozolins, Brigita Neiberte, Anrijs Verovkins, Sanita Vitolina

      Statement of the Problem: The biocomposites such as wood-polymer composite (WPC) have gained more attention in past years due to their sustainable, environment friendly nature. However, there are still many issues obtaining WPCs, mainly because of the poor compatibility between a hydrophobic polymer matrix and hydrophilic wood filler. The mechanical and wetting properties of WPCs depend on the polymer/filler interfacial adhesion, which represents one of the main problems since wood has a strongly polar structure, but the most polymer matrices are non-polar. The purpose of this study is to compare the treatment of aspen wood filler by acid hydrolysis at different temperatures and ammoxidation with the introduction of different amide groups in the filler for improving its compatibility with recycled polypropylene in WPC. Methodology & Theoretical Orientation: aspen wood (Populus tremula) sawdust with a fraction less than 100 μm from Latvian wood mechanical processing company was used. The wetting behaviour and surface free energy of the treated wood particles were analysed using tensiometer Kruss 100M. The composite samples were extruded on a twin-screw extruder at 175oC and then injection moulded at 450 bars. Mechanical tests were carried out according to ASTM D638 and EN ISO 178. Findings: the effectiveness of the acid hydrolysis and ammoxidation of the wood filler for increasing the compatibility with the polymer matrix depend on the hydrolysis temperature and the content of the introduced amide bonds. Conclusion & Significance: Both treatments of aspen wood particles led to increased hydrophobicity of wood particle surface that positively impacted the mechanical properties of the obtained composite samples. With increasing the temperature of the mild hydrolysis from 60 oC to 90 oC, and the content of nitrogen form 1,05% to 2,1%, the mechanical properties of the composite samples have increased, but their wetting with water has decreased. The ammoxidation is a more effective method for modification of the wood filler for enhancing its compatibility with recycled polymer.

      Value Added Abstracts Pages: 10 - 10

      Controlled Drug Delivery Based on Hybrid Crosslinked Hydrogels

      Muhammad Asim Raza and Sang Hyun Park

      Herein, we developed poly (vinyl phenol) (PVP) and carboxymethyl chitosan (CH) based electron beam crosslinked  hydrogrls for controlled drug delivery. Hydrogels were crosslinked at 15 kGY, 30 kGY and 45 kGY irradiation dose. Swelling analysis was performed in distilled water, buffer and ionic solutions.  Swelling results revealed that 15 kGy hydrogel showed optimum swelling in all solutions wheras as the irradiation was increased networking got severe. In-vitro biodegradation test was performed for one week in phosphate buffered saline (PBS). FTIR analysis exhibited the establishment of physical interactions and confirmed the incorporation of functional groups present in the hydrogel. SEM micrographs depicted porous structure of the hydrogel, which is responsible for swelling and drug loading and release. Antibacterial test exhibited good antimicrobial characteristic aganist gram positive and negative bacteria. In order to analyze drug release behaviour of hydrogrls, PBS (pH= 7.4), SIF (pH= 6.8), SGF (pH= 1.2) were chosen and UV-Vis spectroscopy was used to calculate drug release (%).

      Value Added Abstracts Pages: 11 - 12

      Novel green biosynthesis of vanadium pentoxide by the extraction of the white hibiscus sabdariffa leaves as electrode material for super capacitor Applications

      Ngom B D

      A novel green biosynthesis of the vanadium [email protected] hibiscus sabdariffa ([email protected]) nano-flowers- like structures was successfully synthesized by solvothermal method. The X-ray diffraction analysis of the materials revealed the orthorhombic structure V2O5. No other peaks from the white hibiscus sabdariffa were observed in the XRD pattern which revealing the high phase purity of the [email protected] material. The X-ray photoelectron spectroscopy spectrum of the materials exhibited the presence of V3+, V4+ and V5+ in the binding energies of the [email protected] The electrochemical performance of the electrode material was evaluated using a 6 M KOH aqueous electrolyte. The specific capacity of the [email protected] reached a value of 50.4 mA h g-1 at a current density of 0.5 A g-1. An asymmetric capacitor was also fabricated by adopting an activated carbon negative electrode obtained from the peanut shell waste as raw material and the [email protected] as the positive electrode in 6 M KOH electrolyte. The hybrid capacitor of [email protected]//AC displayed a high energy density of 33 W h kg−1 with a corresponding high power density of 470 W kg−1 at 1 A g−1 in a large voltage window of 0.0 - 1.7 V. The device also exhibited an excellent cycling stability with 87% capacity retention recorded for up to 20.000 constant charging–discharge cycles and an excellent ageing test at a specific current of 10 A g-1.

      Value Added Abstracts Pages: 13 - 14

      The Formation of Sulfide Scales on Carbon Steel in Saturated H2S

      Noora Al-Qahtani1, Jiahui Qi2, Aboubakr M Abdullah3, Nicholas J Laycock4 and Mary P Ryan1

      There are three contributing elements of corrosion of Carbon Steel in H??S environment: the effect of H2S on water chemistry; electrochemical reactions of the bare iron surface (both anodic and cathodic processes); and the formation and growth of corrosion product layers. The electrochemical reaction commonly contains three stages: first, the reactant transported from the solution (bulk) to the metal surface; then the transfer of the charge reaction on the surface, followed by the reaction product transported away from the iron surface to the bulk solution or the formation and development of the corrosion product which then can decrease the corrosion rate. Development of a robust corrosion model to predict the corrosion process in H2S these requires a mechanistic understanding of all these elements.

      An experimental study was carried out to assess the corrosion of C-steel under open-circuit technique conditions and in solutions at several ranges of time and temperatures. The effect of film composition, morphology, structure, thickness, and ion- concentration of corrosion product films formed on pipeline Carbon Steel in an acid sour solution were examined. The electrochemical behavior of the filmed steel was measured, and the film properties assessed using a range of advanced techniques including Scanning Electron Microscopy (SEM), and Raman spectroscopy (RS). The data will be discussed in terms of film formation mechanisms.

      Value Added Abstracts Pages: 15 - 15

      Economic Analysis of Isoprene production from good year scientific process

      Usman Asghar

      The isoprene rubber is very much like natural rubber but made artificially or synthetically. Essentially similar to natural rubber in properties, this rubber may be somewhat weaker because it is not 100% the cis-isomer. This rubber is used in the same type of products as natural rubber. About 95% of isoprene production is used to produce cis-1,4-polyisoprene, a synthetic version of natural rubber. The growing demand for fuel efficiency and eco-friendly tires is driving the tire industry and in turn the demand for polyisoprene in the tire industry. The Isoprene Market was valued at USD 1.93 billion in 2015 and is projected to reach USD 2.96 billion by 2021. The isoprene demand in Pakistan will increase up to 24.8% from 2018 to 2025 reportedly. The isoprene market is increasing due to its increasing applications in tires, conveyor belts, hoses, molded rubber, and also in medical equipment such as gloves and balloons. Isoprene can manufacture from four different processes at commercial scale, but Isoprene from formaldehyde is the prevailing process in the industries. This process has disadvantage of low yield and by-products. So this process is further modified to improve the yield and the operating conditions. But still by-products are the main problems which decreases the selectivity and yield. To overcome these issues, manufacturing of Isoprene from propylene is studied in plant design project. It is found that this process has 65% yield and have selectivity of 95%. A cost Analysis was made after the design of different plant equipment, and it is found that a plant of 12000 tons per year has payback period of approximately 4 years.

      Volume 5, Issue 3 (2020)

        Editorial Pages: 1 - 1

        Editorial - JNCR


        I am pleased to introduce International Journal of Nanosciences: Current Research (JNCR) which is an open access electronic journal aiming to provide an online compendium for Nano science Research & Technology. The interdisciplinary coverage of the Journal includes all the basic and applied research of Nano scale sciences with innovative Nanotechnology applications towards science, engineering and technology. We have been started in year 2016 Journal of Nanosciences: Current Research (ISSN: 2572-0813) is growing continuously. It is our pleasure to announce that during year 2019, all issues of volume 12 were published online on time and the print issues were also brought out and dispatched within 30 days of publishing the issue online.

        All published articles of this journal are included in the indexing and abstracting coverage of Index Copernicus, Google Scholar, Sherpa Romeo, Academic Journals Database, Open J Gate, Genamics Journal Seek, Academic Keys, ResearchBible, Directory of Open Access Journals, VieSearch, China National Knowledge Infrastructure (CNKI), Electronic Journals Library, RefSeek, Directory of Research Journal Indexing (DRJI), EBSCO A-Z, OCLC- WorldCat, SWB online catalog, Publons, Advanced Science Index, Secret Search Engine Labs.

        During the calendar year 2019, Journal of Nanosciences: Current Research received a total of 20 papers, out of which 10 articles were rejected in the preliminary screening due to plagiarism or being out of the format and peer review process. During 2019 around 10 articles were subjected for publication after they are accepted in the peer review process. In the 2 issues of Volume 4 published during the year 2019, a total of 10 articles were published (at an average of 5 articles per issue of which, articles were published from authors all around the world. A total of 25 research scientists from all over the world reviewed the 10 articles published in volume 4. Average publication period of an article was further reduced to 14-21 days.

        During the calendar year 2019, a total of three Editors, ten Reviewers joined the board of JNCR and contributed their valuable services towards contribution as well as publication of articles, and their valuable reviewer comments will beneficial to publish quality of article in the Journal.

        I take this opportunity to acknowledge the contribution of Editor-in-chief and Associate Editor during the final editing of articles published and bringing out issues of JNCR in time. I would also like to express my gratitude to all the authors, reviewers, the publisher, language editor, honorary editors, the scientific advisory and the editorial board of JNCR, the office bearers for their support in bringing out the new volume (Volume 5, Issue 3) of JNCR for the calendar year 2020 and look forward to their unrelenting support further to release more issues for Journal of Nanosciences: Current Research (JNCR) in scheduled time.

        Research Article Pages: 1 - 7

        Development of a Sba-15 Mesoporous Silica Matrix and Functionalizade with Organic Groups to Purification of the Ribonucleic Acid

        Diaz Cano Cesar Alejandro, Nava Mendoza Rufino and Campos Guillen Juan

        Ribonucleic acid (RNA) is of great importance because it ranges from laboratory tests, to diagnoses of viral, bacterial and parasitic diseases, inherited disorders and tumors, and even basic research. To provide reliable results, molecular biology techniques are used to extract it from prokaryotic or eukaryotic cells, but it is necessary to obtain pure and intact RNA biomolecules. Therefore, purifying the RNA is a critical step to obtain good quality RNA molecules (pure and intact). For these reasons, this thesis project will develop mesoporous silicas of the SBA-15 type functionalized with amino and mercaptan, as adsorbent materials for RNA purification. These functionalized mesoporous silicas that must have adequate textural properties (pore diameter in the mesoporous range of 7 nm and high surface area of up to 950 m2 / g) will allow the adsorption of RNA biomolecules on their surface through functional groups. Furthermore, these adsorbent materials are expected to purify RNA molecules with uniform size. In order to find an explanation for the behavior of adsorbent materials in RNA purification, they will be characterized by low angle X-ray Diffraction (SAXRD, Small-Angle X-Ray Diffraction), Raman spectroscopy, thermal analysis and gel electrophoresis.

        Short Communication Pages: 1 - 1

        Advanced Materials 2018: Toughening of nanocomposites for applications in cryogenic fuel tank- Mohammad S Islam - The University of New South Wales

        Mohammad S Islam and Chun H Wang

        Microcracks can occur in carbon fiber composite materials thanks to high thermal stresses induced by the massive difference of the coefficient of thermal expansion between the polymer matrix and therefore the carbon fibers. These micro-cracks can severely degrade the mechanical strength and gas permeability of composites, posing a big challenge to the utilization of fiber composites in liquid fuel tanks of launch vehicles. The aim of the study was to develop a multi-scale toughening method to deal with the micro-cracking problem by incorporating hybrid nano-scale materials to reinforce the fracture toughness and to scale back the coefficient of thermal expansion of the polymer matrix. Nanomaterials like nano-silica, graphene and metal oxide were selected supported their thermal properties and toughening effect. Tensile and Single Edge Notch Bending (SENB) testing of the polymer and nanocomposites were administered to review their tensile properties and bulk fracture toughness respectively, while Double Cantilever Beam (DCB) testing was administered to work out the critical energy release rate (GIC values) of the fiber-polymer laminates. The results show that nano-silica improved the fracture toughness of the composites while metal oxide nanoparticles provided the simplest improvement in thermal conductivity, lastingness, and fracture toughness.

        Introduction: Carbon fiber reinforced resin matrix composite materials (CFRC) are getting used within the aerospace industry as a way of reducing vehicle weight. CFRC has advantages in high strength-to-weight and high stiffness-to-weight ratios. For future heavy-lift launch vehicles and space exploration structures, advanced lightweight composites are going to be fully utilized so as to attenuate vehicle weight, and CFRC in space applications requires rigorous development to demonstrate robustness, durability, and high factors of safety. the longer term heavy-lift launch vehicles require extremely high propellant mass fractions to realize the designed performance. This drives the designers to include lightweight materials into as many structures as possible. Propellant fuel tanks account for an outsized proportion of the launch vehicles, both structural mass and geometric space. Approximately 60% of the dry mass of a launch vehicle is that the fuel and oxidizer tanks. The implementation of composite cryogenic propellant fuel tanks (cryotank) for future heavy-lift launch vehicles could greatly reduce the vehicle’s weight by replacing the identically sized cryo tanks constructed of metallic materials. United States’ Committee on Materials Needs and R&D Strategy for Future Military Aerospace Propulsion Systems reported that composites offer the potential for the best mass reduction of all of the materials for the tank. For the case of Delta IV heavy-lift launch vehicle, as shown, compared to Li-Al fuel tank, the load saving of upper stage composite cryo tanks was 43 and 26%, respectively. additionally, composite design could reduce fabrication costs. Delta II faring, Delta III faring, and interstage production data have shown that composite launch vehicle structures are less costly than metal ones. Graphite-epoxy composite cryogenic tank development began at Boeing (then McDonnell Douglas) in 1987 and continues today, primarily for reusable launch vehicles (RLV) and heavy-lift vehicles. The cryogenic tanks are the dominating components of the vehicle structure. to realize a weight reduction of the next-generation launch vehicles, carbon fiber reinforced polymeric based composites are being explored for the cryogenic liquid fuel tank. A composite cryo tank structure can save 30% by weight than lithium aluminum alloy.

        Short Communication Pages: 1 - 1

        Emerging Materials Congress 2019: Advances in membrane technology for paving the way for water sustainability- Amira Abdelrasoul, University of Saskatchewan

        Amira Abdelrasoul

        Clean water as basic human need isn't available to 1.4 -1.8 billion people round the world. it's essential to DC research trends toward sustainable water and wastewater treatment technologies which will solve the prevailing industrial and environmental issues, especially when it involves solutions which will be successfully commercialized on the worldwide scale. Membrane applications are the foremost effective and sustainable methods of addressing environmental problems in treating water and wastewater to satisfy or exceed stringent environmental standards. Nevertheless, membrane fouling is one among the first operational concerns that's currently hindering its widespread application. Her major research focus is to optimize synthesis of biomimetic membranes designed with antifouling, and selective permeation which will pave the way for the assembly of unpolluted water.

        Sustainable energy is that the key solution for addressing major concerns about the longer term like global climate change, environmental protection, and balanced growth of the economy and society. The past 20 years have witnessed advancement in economic development in many nations. However, the rapid economic process , industrial advancement, energy shortage, deterioration of the environment and increasing demands of growing populations pose an enormous threat for future generations. for several years, economic development has been the key focus of the many policy makers in sustainable development until the inception of the Kyoto protocol agreement in 1997, which incorporates environmental quality as an important variable for sustainable development. With global energy consumption and electricity demands expected to double within the next twenty-five years, major opportunities for innovation in how energy is produced, stored, transmitted and used have begun to open up. especially, there's an enormous interest in sustainable energy technologies capable of improving efficiency and reducing the worldwide carbon footprint.

        The development of sustainable energy is, however, restricted by various factors, like the supply of natural resources thanks to regional differences, sensitivity to the environmental impacts of fossil-fuel based energy, increasing water scarcity, and differing economic policies. Development of an approach to sustainable energy that addresses environmental concerns, greenhouse emission emission, cost, availability of resources, and social impact may be a huge challenge. The key focus for attaining energy sustainability is to scale back and slowly replace power generation by fossil fuels with renewable energy sources. Though some aspects of this sustainable approach are being adopted, there are others yet to be translated at a billboard scale. as an example , major concerns about CO2 (CO2) emissions in traditional fossil fuel-based power generation has paved the way for several sustainable energy sources like wind and solar, alongside CO2 capture and sequestration technologies. aside from this, there's a growing recognition of technologies like cogeneration plants, where a mixture of techniques contributes to reduced water demand while generating energy, leading to effective water use to satisfy the demand. Water and energy are the 2 key aspects for sustainable development for the longer term. 

        Short Communication Pages: 1 - 1

        Emerging Materials Congress 2019: Indium doping effects of CdSe nanocrystalline films for solar cell applications- N. J. Suthan Kissinger, Jubail University College

        N. J. Suthan Kissinger

        Energy storage capacity, conversion efficiency with clean power to the environment makes PEC photovoltaic cell to seek out potential applications within the field of energy. Suitable bandgap and high stability make CdSe (Cadmium Selenide), a promising material for photovoltaic cell applications. Also, the performance of CdSe based devices is influenced by doping with suitable material. In our present work beam (EB) evaporation method was employed to deposit CdSe and Indium doped CdSe (with In concentration of 25, 50 and 75%) thin films at different substrate temperatures and therefore the films were optimized for the preparation of (Photo electrochemical) PEC solar cells. The EDX analysis shows the rise within the percentage of indium with the rise within the concentration of doping and therefore the X-ray analysis shows the shifting within the peak position which confirms the incorporation of indium. The grain sizes were found to be within the range of 20-24 nm and it's found to decrease with a rise in concentration. The calculated energy gap value decreased with increase in concentration. PEC photovoltaic cell is fabricated using CdSe: In films prepared by EB technique with a thickness of 400 nm and substrate temperature of 100°C. The I-V studies performed under the illumination of 100 mW/cm2 and it's found that the 25% of indium in CdSe showed an efficiency of two .66% and fill factor of 0.41.

        There is an incredible interest within the physical and chemicalproperties of nanocrystalline thin films on the idea of quantum confinement effects. Tuning of the band gap by changing the parti-cle size and consequent band edge luminescence over the entire visible range has been utilized in optoelectronic devices, biolabeling etc. Thin films of II–VI semiconductors are of considerable interest due to their excellent optical properties within the visible range. Metal selenide thin films offer a variety of optical band gap energies suitable for various optical and optoelectronic applications. CdSe may be a widely used semiconductor whose band gap (Eg= 1.7 eV) lies within the solar power spectrum. it's one among the prom-ising semiconducting materials that are studied for application in solar cells, thin film transistors, gamma-ray detectors, photodetection and optoelectronic applications. CdSe can exist in either zincblende (cubic) or wurtzite (hexagonal) modification in solid state.

        Doped semiconductor nanoparticles are studied exten-sively due to their excellent luminescence properties. Dop-ing may be a widely used method to tailor the electrical and optical properties of semiconductors. Major attention has been given in recent years to the investigation of electrical and optical proper-ties of doped CdSe thin films so as to enhance the performance of the devices and also to find new applications. Various methods have been reported to organize In doped CdSe thin films.


tempobet giriş

tempobet giriş


tipobet yeni giriş adresi tipobet e yeni giriş tipobet güncel giriş adresi imajbet giriş adresi

mobilbahis giriş

arrow_upward arrow_upward