Journal of Nanosciences: Current Research

ISSN: 2572-0813

Open Access

Polymeric stabilization of a calcium sulfate particle produced by 3D printing for bone regeneration applications.


Imran Azmana, Jitima Preechawonga, Pornsri Sapsrithong and Manit Nithitanakul

This research explored on a new path of preparation the porous material by using combination of water in oil emulsion templating along with the supplementary of low intensity polymerization reaction. Poly(styrene/ethylene glycol dimethylacrylate)HIPEs were prepared by using a domestic microwave for fabricating the multiscale porosity material. The radical polymerization reaction was precursor at the lowest intensity of 10 watt resulted with prognosticated result towards the surface topography of poly(sty/edgma)HIPEs as the monomer and crosslinker respectively. The ratios of water and oil phase were varied with the constant concentration of crosslinker and stabilizer. The different in the oil phase resulting to the gradually increment of the pores size from 60.2 ?m, 95.4 ?m and 126.3 ?m. Varying of the aqueous phase at 80%, 90% 92% and 94% with 2 wt% of surfactant showed n growing level of pore interconnectivity from 60.2 ?m to 109.9 ?m. Cellular morphologies of poly(sty/edgma)HIPEs were observed by using FE-SEM. In addition, to approbate the crosslinked poly(sty/edgma), ATR-FTIR were employed. It displays a distinct narrow peak around 770 cm-1 which explains the C-H stretching between the aromatic planar of styrene and carboxyl group of edgma. A preliminary result of absorption test was recorded for discovering the potential of poly(sty/edgma)HIPEs towards the dye absorption. Poly(sty/edgma)HIPEs with  90% volume of oil phase ratio were tested with varied concentration (g/cm3) of methylene blue and orange. It were appraised a positive results of dyes captivation in between of a week period. Poly(sty/edgma)HIPEs were furthered investigated by TGA/DSC and compression test.


Share this article

Google Scholar citation report
Citations: 370

Journal of Nanosciences: Current Research received 370 citations as per Google Scholar report

Journal of Nanosciences: Current Research peer review process verified at publons

Indexed In

arrow_upward arrow_upward