Virtual preparation and commissioning of production systems including PLC-logic

Advances in Robotics & Automation

ISSN: 2168-9695

Open Access

Virtual preparation and commissioning of production systems including PLC-logic

World Congress on Industrial Automation

July 20-22, 2015 San Francisco, USA

Petter Falkman

Posters-Accepted Abstracts: Adv Robot Autom

Abstract :

Vehicle manufacturing companies are today forced to handle and respond to a rapidly growing variety of vehicles, due to the environmental restriction on energy consumption and CO2 emissions. An additional requirement is also that these new innovative and environmentally friendly products are produced in already existing factories. A clear trend today is also that production volume has to be changed with short notice to meet market changes. Today├ó┬?┬?s manufacturing systems therefore have to be both energy- and time efficient, safe, as well as flexible to manage this complexity. The challenge is to reduce the production preparation time by bringing together mechanical and electrical engineers into a common virtual environment achieving a more efficient cooperation, enabling automatic generation of verified control programs. Another challenge is reducing energy consumption by embedding detailed robot energy optimization into early scheduling. A third challenge is to increase production efficiency, increase human and machine safety and decrease the number of discarded parts by performing virtual commissioning of entire manufacturing stations, including complete robot programs, control logic and safety equipment including HMIs. A required step in order to handle the above described problems is to extend early process design and mechanical simulation with control logics to ensure an intended behavior. It has been shown that possible savings could be achieved if PLC programming and optimization is included in earlier production preparation phases together with new functionality based on formal methods.

Google Scholar citation report
Citations: 1004

Advances in Robotics & Automation received 1004 citations as per Google Scholar report

Advances in Robotics & Automation peer review process verified at publons

Indexed In

arrow_upward arrow_upward