Nuclear Medicine & Radiation Therapy

ISSN: 2155-9619

Open Access

Pre-Chemoradiotherapy FDG PET/CT cannot Identify Residual Metabolically-Active Volumes within Individual Esophageal Tumors


Objective: To study whether subvolumes with a high pre-chemoradiotherapy (CRT) FDG uptake could identify residual metabolically-active volumes (MAVs) post-CRT within individual esophageal tumors. Accurate identification will allow simultaneous integrated boost to these subvolumes at higher risk to improve clinical outcomes.
Methods: Twenty patients with esophageal cancer were treated with CRT plus surgery and underwent FDG PET/CT scans before and after CRT. The two scans were rigidly registered. Seven MAVs pre-CRT and four MAVs post-CRT within a tumor were defined with various SUV thresholds. The similarity and proximity between the MAVs pre-CRT and post-CRT were quantified with three metrics: fraction of post-CRT MAV included in pre-CRT MAV, volume overlap and centroid distance.
Results: Eight patients had no residual MAV. Six patients had local residual MAV (SUV ≥2.5 post-CRT) within or adjoining the original MAV (SUV ≥2.5 pre-CRT). On average, less than 65% of any post-CRT MAVs was included in any pre-CRT MAVs, with a low volume overlap <45%, and large centroid distance >8.6 mm. In general, subvolumes with higher FDG-uptake pre-CRT or post-CRT had lower volume overlap and larger centroid distance. Six patients had new distant MAVs that were determined to be inflammation from radiation therapy.
Conclusions: Pre-CRT PET/CT cannot reliably identify the residual MAVs within individual esophageal tumors. Simultaneous integrated boost to subvolumes with high FDG uptake pre-CRT may not be feasible.


Share this article

Google Scholar citation report
Citations: 570

Nuclear Medicine & Radiation Therapy received 570 citations as per Google Scholar report

Nuclear Medicine & Radiation Therapy peer review process verified at publons

Indexed In

arrow_upward arrow_upward