GET THE APP

..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Effect of Size, Temperature, and Structure on the Vibrational Heat Capacity of Small Neutral Gold Clusters

Abstract

Vishwanathan K

The vibrational heat capacity Cvib of a re-optimized neutral gold cluster was investigated at temperatures 0.5-300 K. The vibrational frequency of an optimized cluster was revealed by small atomic displacements using a numerical finite-differentiation method. This method was implemented using density-functional tight-binding (DFTB) approach. The desired set of system Eigen frequencies (3N -6) was obtained by diagonalization of the symmetric positive semi definite Hessian matrix. Our investigation revealed that the Cvib curve is strongly influenced by temperature, size, and structure and bond-order dependency. The effect of the range of interatomic forces is studied; especially the lower frequencies make a significant contribution to the heat capacity at low temperatures. In addition to that, we have exactly predicted the vibrational frequencies (ωi) which occur between 0.55 to 370.72 cm-1, depending on the nanoparticle morphology at T=0 for small neutral gold clusters AuN=3-20. This result has been proved and confirmed by the size effect values. It was found that beside the particle size, geometric shape, defect structure and an increase in asymmetry of nanoparticles effects on heat capacity. Surprisingly, the Boson peaks are typically ascribed to an excess density of vibrational states for the small clusters. Finally, temperature dependencies of the vibrational heat capacities of the re-optimized neutral gold clusters have been studied for the first time.

PDF

Share this article

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

arrow_upward arrow_upward