GET THE APP

..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Analytical and Numerical Analysis of Functionally Graded Heat Conduction Based on Dirichlet Boundary Conditions.

Abstract

Essa S

An analytical and numerical solution for the one dimensional of heat conduction in a slab exposed to different temperature at both ends is presented. The distribution of heat throughout the transient direction obeys to functionally graded (FG) temperature based on Dirichlet boundary conditions. The variation of functionally graded temperature can be described by any form of continuous function. In this case, where the external heat fluxes are not directly definite based on the Dirichlet or mixed boundary conditions, the fluxes that concluded over the slab faces are free to vary until the equilibrium condition is reached. By numerically solving the resulting heat-conduction equation, the distribution of temperature which vary with time through the slab is obtained. The obtained analytical results are presented graphically and the influence of the gradient variation of the temperature on shape formed with changed time is investigated.

PDF

Share this article

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

arrow_upward arrow_upward