GET THE APP

Quantifying skin stretch induced motion artifact from an electrocardiogram signal
..

Journal of Bioengineering & Biomedical Science

ISSN: 2155-9538

Open Access

Quantifying skin stretch induced motion artifact from an electrocardiogram signal


3rd International Conference on Medical Physics & Biomedical Engineering

November 07-08, 2016 Barcelona, Spain

Anubha Kalra

Auckland University of Technology, NewZealand

Posters & Accepted Abstracts: J Bioengineer & Biomedical Sci

Abstract :

This work presents a 2D quantification of strain field caused due to the motion artifact in an Electrocardiogram (ECG) measurement. The objective of this work is to estimate the skin stretch induced motion artifact in an ECG signal. An ECG measurement was obtained from a subject for 10 seconds using standard Ag/AgCl electrodes by continuously moving the arm back and forth during the measurement. The motion artifact produced due to the arm movement was emulated using a Poly dimethyl siloxane (PDMS) patch of dimensions 40 mm x 45 mm x 0.254 mm adhered to the arm. The movement of the PDMS patch during the ECG measurement was recorded in a video and motion artifact was quantified in terms of normal and shear strain components ├?┬Áx, ├?┬Áy and ├?┬Áxy. These values were derived using feature detection and Euclidean distance feature mapping. The obtained motion artifact can be eliminated from the ECG signal using adaptive filtering or other techniques such as extended kalman filtering (EKF). This method of evaluation of the strain components was validated against a finite element analysis SolidWorks├?┬«.

Biography :

Email: akalra@aut.ac.nz

Google Scholar citation report
Citations: 289

Journal of Bioengineering & Biomedical Science received 289 citations as per Google Scholar report

Journal of Bioengineering & Biomedical Science peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward