Jing Wang, Sandeep Menon and Mark Chang
Adaptive clinical trial designs have been getting very popular in recent years. The PhRMA Working Group defines an adaptive design as a clinical study design that uses accumulating data to direct modification of aspects of the study as it continues, without undermining the validity and integrity of the [1]. These designs can assist in potentially accelerating clinical development and improving efficiency. However, the multiple interim looks and adaptive adjustments with the design can lead to inflation of type I error. Over the past decade, several statistical approaches have been proposed to control the inflation, some of which have been widely applied in practice. Some of these approaches include: error spending approach for classical group sequential plans [2-4]; Combination of p-values, such as Fisher’s combination test [5,6], Inverse Normal Method [7], sum of p-values approach [8]; conditional error function [9-11]; fixed weighting method [12]; variance spending method [13,14]; and multiple testing methodology such as closed test procedures [15-17].
PDFShare this article
Journal of Biometrics & Biostatistics received 2450 citations as per Google Scholar report