Journal of Biometrics & Biostatistics

ISSN: 2155-6180

Open Access

Fast Computation of Significance Threshold in QTL Mapping of Dynamic Quantitative Traits


Nating Wang, Hongxiao Tian, Yongci Li, Rongling Wu, Jiangtao Luo and Zhong Wang*

Functional Mapping is a popular statistical method in QTL mapping studies for longitudinal data. The threshold for declaring statistical significance of a QTL is commonly obtained through permutation tests, which can be time consuming. To improve the computational efficiency of a permutation test of mixture models used in Functional Mapping, we first quantified the correlation between QTL and longitudinal data, using a curve clustering method. Then, the QTLs which are highly correlated with the outcome were computed in the improved permutation tests. As a result, it reduces the amount of computation in permutation tests and speeds up the computation for Functional Mapping analysis. Simulation studies and real data analysis were conducted to demonstrate that the proposed approach can greatly improve the computational efficiency of QTL mapping without loss of accuracy.


Share this article

Google Scholar citation report
Citations: 3254

Journal of Biometrics & Biostatistics received 3254 citations as per Google Scholar report

Journal of Biometrics & Biostatistics peer review process verified at publons

Indexed In

arrow_upward arrow_upward