GET THE APP

..

Biosensors & Bioelectronics

ISSN: 2155-6210

Open Access

Accelerating Maturation of Human iPSC-Derived Dopamine Neurons with Organ-Chip Technology

Abstract

Yang Woo*

The maturation of human-induced Pluripotent Stem Cell (iPSC)-derived dopamine neurons holds great promise for disease modeling and drug discovery in neurodegenerative disorders like Parkinson's disease. However, achieving the appropriate maturation state remains a significant challenge. This study explores the application of Organ-chip technology to accelerate the maturation of iPSC-derived dopamine neurons. Organchips provide a microfluidic environment that mimics in vivo conditions, allowing for precise control of biochemical and biophysical cues. By culturing iPSC-derived dopamine neurons within Organ-chips, we observe enhanced maturation, including increased neuronal complexity, functional properties and maturity markers. These findings offer a novel approach to advancing the development of more physiologically relevant in vitro models for neurodegenerative diseases and provide a valuable tool for drug screening and understanding disease mechanisms.

HTML PDF

Share this article

Google Scholar citation report
Citations: 6207

Biosensors & Bioelectronics received 6207 citations as per Google Scholar report

Biosensors & Bioelectronics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward