Physical Mathematics

ISSN: 2090-0902

Open Access

A Viscosity Hypothesis – That the Presence or Absence of Viscosity Separates Relativistic and Quantum Systems Based on the Simplest Possible Theory of Everything


Lawrence M

A simple framework for our universe in which the basic constituents act as a background upon which actions by composite particles, composed of those same constituents in motion, act and whose presence or absence from volumes give rise respectively to relativistic and quantum systems. Where the background exists, all composite particles experience energy loss in motion due to viscosity and a maximum velocity and where the background does not exist, there is no energy loss in motion and no maximum velocity. The framework is based on the simple premises of the one size of fundamental building block, the meon, two types of energy, one composite loop form of particle and only three dimensions. Composite loops formed from the unit meon building blocks during different inflation events produce different sizes of fermions, nucleons and atoms, but produce a type of universe with symmetries similar to ours as the inevitable outcome of a successful inflation event. The rate of expansion after a big bang is a function of the size of the electron formed during inflation and that size defines whether the expansion will eventually succeed or fail.


Share this article

arrow_upward arrow_upward