GET THE APP

..

Journal of Brain Research

ISSN: 2684-4583

Open Access

A Neural Biomarker for Hallucinations: Medial Prefrontal Aberrations in Neural Connectivity Predict Self-Agency Deficits and Hallucination Severity in Schizophrenia

Abstract

Shalaila S. Haas, Leighton B.N. Hinkley, Melissa Fisher, Sophia Vinogradov, Srikantan Nagarajan and Karuna Subramaniam*

Prior studies have shown that the medial prefrontal cortex (mPFC) represents one neural substrate that mediates judgments of self-agency (i.e., the awareness that ‘I am the originator of my actions’). Patients with schizophrenia (SZ) manifest cardinal self-agency deficits that contribute to debilitating psychotic symptoms (e.g. hallucinations) and distort reality monitoring. This is the first study in which we examine across 2 SZ samples, the mPFC site that underlies self-agency deficits during an explicit reality-monitoring task (i.e., while subjects distinguish self-generated information from externally-derived information) in one SZ sample, and link Intrinsic functional connectivity (iFC) during rest within this a priori task-evoked self-agency seed with hallucination symptoms in a different SZ sample. In particular, we examined the iFC between the mPFC site that underlies self-agency deficits with all other brain regions in SZ using resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data were collected from 32 SZ and 28 age, gender, and education-matched healthy control (HC) subjects. Functional connectivity maps were computed for each subject and compared between the HC and SZ groups. Within-group and between-group analyses revealed that aberrant iFC in this a priori-defined mPFC ‘self-agency seed’ predicted hallucination severity. The present findings reveal that the neural aberrations in this mPFC site represent one cardinal biomarker that underlies explicit self-agency deficits during a reality-monitoring task in one SZ sample that generalized to aberrant iFC differences in a different SZ sample and predicted worsening psychotic hallucinatory experiences. This region may represent a key neurobiological target for treatment avenues to improve hallucinatory symptoms.

HTML PDF

Share this article

Google Scholar citation report
Citations: 2

Journal of Brain Research received 2 citations as per Google Scholar report

Journal of Brain Research peer review process verified at publons

Indexed In

arrow_upward arrow_upward