GET THE APP

The shell-nodal structure of the atoms
..

Journal of Lasers, Optics & Photonics

ISSN: 2469-410X

Open Access

The shell-nodal structure of the atoms


2nd International Conference on Quantum Physics and Quantum Technology

September 25-26, 2017 Berlin, Germany

Georgi P Shpenkov

University of Science and Technology in Bydgoszcz, Poland

Keynote: J Laser Opt Photonics

Abstract :

Analyzing particular solutions of a three-dimensional (not Schrodingerâ??s) wave equation in spherical polar coordinates, we have found that they contain information about the atomic structure. Considered as the wave formations, atoms have a quasi-spherical shell-nodal structure coincident with the nodal structure of standing waves in three-dimensional wave spacefield. Their nodes, filled with paired hydrogen atoms, are bound by strong interaction. Each atom with Z â?¥ 2 represents a specific elementary molecule of hydrogen atoms, to which we refer proton, neutron and protium. The shell-nodal structure of the atoms was verified in different ways. All of them completely confirmed the trueness of the found structure. A unique opportunity for the direct verification of the discovery gave us graphene. According to the modern data, a two-dimensional hexagonal lattice of graphene has a six-fold axis of symmetry. Hence, in full agreement with a basic symmetry theory, physical properties of graphene must be isotropic in a plane perpendicular to this axis, in particular, electrical conductivity. However, our studies have shown that graphene actually has a two-fold axis of symmetry, due to the shell-nodal structure of carbon atoms, and is an anisotropic crystal. Along the main axis of anisotropy, there are empty potential-kinetic polar nodes (invisible for modern devices), which form a specific channel conducive to the â??ballisticâ? motion of charges in it. In this direction, graphene behaves like a metal. In a perpendicular direction graphene exhibits semiconducting properties. Laboratory tests completely confirmed the predicted feature of graphene, following from particular solutions of the wave equation. Polar diagrams of conductivity of one-atom thickness graphene layers, measured along a plane in all directions, have a characteristic elliptical form for all test samples (they had a round shape) which are inherent in anisotropic materials. Experiments performed by polarized Raman spectroscopy also confirmed the above feature of graphene, found theoretically. Thus, â??atomsâ? are the wave formations. Having the shell-nodal structure, they represent elementary molecules of hydrogen atoms.

Biography :

Georgi Shpenkov has completed his PhD in 1968 from Ioffe Physico-Technical Institute of RAS (Leningrad) and DrSc degree in 1991 (Tomsk, RAS). He is a retired Professor, an Honorary Member of the Russian Physical Society. He has published 9 books and more than 100 papers in different issues. His main achievements are the discoveries of the nature of mass and charge of elementary particles, the Shell-Nodal (molecule-like) structure of the atoms, the microwave background radiation of the hydrogen atom, the Dynamic Wave structure of the elementary particles, the fundamental period-quantum of the decimal code of the universe, the fundamental frequencies of the atomic, subatomic and gravitational levels, the true nature of the Lamb shift, etc.

arrow_upward arrow_upward