Quantum decoration transformation for spin models

Journal of Lasers, Optics & Photonics

ISSN: 2469-410X

Open Access

Quantum decoration transformation for spin models

2nd International Conference on Quantum Physics and Quantum Technology

September 25-26, 2017 Berlin, Germany

Onofre Rojas

Universidade Federal de Lavras, Brazil

Posters & Accepted Abstracts: J Laser Opt Photonics

Abstract :

The classical version of decoration transformation has been used to map lattice spin models into another equivalent lattice spin models. This transformation is a very useful tool for identifying a class of lattice spin models, since, it is possible to show a class of lattice spin models that can be map into another class of exactly solvable models. Here we present a quantum version of decoration transformation and show how this transformation could be applied to Heisenberg type models. This transformation can be useful to study the equivalence between two quantum spin systems such as a small cluster of quantum spin models or even lattice quantum spin models. The quantum decoration transformation by itself is an exact transformation, although the proposed transformation cannot be used to map exactly a quantum spin lattice model onto another quantum spin lattice model, since, the operators are non-commuting. However, it is possible mapping in the classical limit, establishing the equivalence between two quantum lattice spin models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. The correction term involves the second-nearest-neighbor coupling, as well as the next nearest neighbors, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, so we compare with exact numerical results, and our result is consistent when the xy-anisotropy coupling is weak, we also apply to bond-alternating Ising-Heisenberg chain model, obtaining an approximate result.

Google Scholar citation report
Citations: 279

Journal of Lasers, Optics & Photonics received 279 citations as per Google Scholar report

Journal of Lasers, Optics & Photonics peer review process verified at publons

Indexed In

arrow_upward arrow_upward