GET THE APP

..

Journal of Civil and Environmental Engineering

ISSN: 2165-784X

Open Access

Volume 11, Issue 8 (2021)

Research Article Pages: 1 - 4

Synthesis and Characterization of Pure and Manganese (Mn) Doped Zinc Oxide (ZnO) Nanocrystallites for Photocatalytic Applications

Velavan R*, Balakrishnan G, Batoo KM and Emad H. Raslan

DOI: 10.37421/2165-784X.21.11.406

In this work, pure and manganese (Mn) doped zinc oxide (ZnO) nanocrystallites are synthesized using a sol-gel technique. 0.25 M solution of zinc nitrate hexahydrate is prepared in 50 ml of DI water with stirring condition. An equimolar citric acid (0.25 M) solution is added slowly into the above solution and stirred for 2 hrs. at 70ºC. The obtained gel is dried for 3 hrs in hot air oven at 120°C. Further, the nanoparticles are annealed at 400°C and the samples are characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, photoluminescence spectroscopy (PL) and photo catalytic studies. XRD analysis deciphered the polycrystalline hexagonal of the samples and the crystallites sizes are observed to be 18 nm and 42 nm for the pure and Mn doped ZnO particles, respectively. FE-SEM studies demonstrate that the crystallites are spherical in shape with agglomeration. PL studies reveal the emission bands at 490 nm for pure ZnO and 530 nm for Mn doped ZnO. The photocatalytic studies determine the photocatalytic performance of pure ZnO NPs and Mn doped ZnO NPs under the UV light irradiation (365 nm and 125 W) in which, the pure ZnO degrades MB dye more efficiently than Mn doped ZnO.

Research Article Pages: 1 - 6

Partial Replacement of Fine Aggregates in Cement Mortar by using Pond Ash and Development of Low Cost Tiles

Trupti Mala Pattnaik*, Rimi Samanta and Snehalata Padhy

DOI: 10.37421/2165-784X.21.11.407

Pond ash is squanders and waste product of Thermal force plant, have been acquainted into Indian solid industry with save common assets of elements of cement. In India, a large portion of the Thermal force plants embrace wet technique for debris removal. Lake debris is gathered from Thermal force plant at the base, in that it contains critical measure of generally coarser particles (crossing from 150 microns to 2.36 mm). Lake debris usage assists with diminishing the utilization of normal assets. Additionally it is help to take care of the issue of removal of Pond debris since it contains enormous measure of substance mixes, for example, SiO2, Al2O3 and so on. These synthetic mixes (SiO2, Al2O3) are assumes a significant job in hydration response and assists with delivering bond between two nearby particles. Utilization of Pond Ash in concrete is a significant eco productivity drive. It is important to locate the specific appropriate rates of lake debris so it is chosen to use in differing rate as 0%, 5% 10%, 15%, 20%, 25%, 30%. Also, to check the properties of new concrete and solidified cement, for example, droop and compressive quality, rigidity, flexural quality individually. Likewise solid assumes a significant job in long life time of structure so it is additionally critical to check impact on strength by utilizing sulfate assault, chloride particle entrance, drying shrinkage. Study shows the essential properties of Pond ash. It likewise contrasts these properties and characteristic sand. Fractional substitution doesn't bring on any unfavorable impact on properties of new concrete. The outcome shows that solid invigorating great with fractional substitution of fine total. Just as Pond debris is the acceptable whenever utilized as filler material in concrete. Subsequently, it is appropriate to utilize lake debris as fine total or halfway supplanting with normal sand.

Research Article Pages: 1 - 4

Evaluation of Flexural Strength of Stirrup less Voided Beam of Conventional or Reactive Powder Concrete

Tamara A. Qasim and Aqil M. Almusawi*

DOI: 10.37421/2165-784X.21.11.405

Light-weight beam has received considerable critical attention to decrease the stresses or to increase spans. This study was undertaken using double spherical plastic bubbles in a specific zone (shear zone) to evaluate the flexural behavior of the stirrup less beam. Two types of concrete (conventional concrete of ordinary Portland cement and high strength concrete of reactive powder (RPC) reinforced by steel fiber) were used to obtain four beam specimens' of 1300 mm in length, two beams have double spherical plastic bubbles and two beams in solid form as a reference. These beams were prepared to investigate the effect of plastic bubbles, concrete strength, and steel fiber on the shear behavior under a flexural moment. Results indicated that the flexural strength of bubbled beams was decreased for the two types of concrete. In contrast, the specific flexural strength was much closed due to the concrete density reduction by (6.22 and 6.24)% for conventional and high strength concrete respectively.

arrow_upward arrow_upward