GET THE APP

..

Journal of Tissue Science and Engineering

ISSN: 2157-7552

Open Access

Polyester Fleeces used as an Artificial Interstitium Influence the Spatial Growth of Regenerating Tubules

Abstract

Anne Glashauser, Lucia Denk and Will W. Minuth

In regenerative medicine the use of stem/progenitor cells is a valuable therapeutical option for the regeneration of diseased tissues and organs. However, the secure application of cell-based therapies for the treatment of renal failure requires exact information regarding the mechanisms of parenchyma development in combination with different kinds of biomaterials. Recently, we demonstrated that application of stem/progenitor cells in combination with a polyester fleece I-7 as an artificial interstitium supported the spatial generation of tubules during perfusion culture in chemically defined Iscove`s Modified Dulbecco’s Medium containing aldosterone (1x10-7M). In the present experiments we investigated if the use of different polyester fleeces (Posi-4 and Posi-5 in comparison to I-7) has any effect on generation, differentiation and spatial development of tubules. In consequence, immunohistochemistry, transmission electron microscopy and scanning electron microscopy were performed. Since the specimens were not coated by extracellular matrix proteins, unique insights in the contact zone between the basal lamina, interstitial cells and surrounding polyester fibers can be obtained. Analyzing the specimens developing in I-7, Posi-4 and Posi-5 polyester fleeces by means of immune histochemistry and transmission electron microscopy illuminated that no cell biological differences could be observed. In contrast, scanning electron microscopy of generated tubules demonstrated that a difference in spatial distribution and different diameters of tubules could be registered. It is concluded that tested I-7, Posi-4 and Posi-5 polyester fleeces appear as promising candidates to shelter stem/progenitor cells after implantation although they exhibit different spatial growth pattern.

PDF

Share this article

Google Scholar citation report
Citations: 807

Journal of Tissue Science and Engineering received 807 citations as per Google Scholar report

Journal of Tissue Science and Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward