GET THE APP

..

Journal of Steel Structures & Construction

ISSN: 2472-0437

Open Access

Manageable Surveillance Programme for Reactor Pressure Vessel Materials Current Condition Analysis

Abstract

Evgenii Krasikov

The surveillance programme (SP) calls upon to predict head reactor pressure vessel (RPV) material characteristics conservatively to guarantee RPV structural integrity without any compromise. General vice of existing SPs is an impossibility of SP changing and development during reactor operation (30, 60 and even more years). Up to day, approach based on initial hard nomenclature of surveillance specimens installed in capsules. Therefore, practically it is impossible to change anything in SP during RPV service life. Anachronistic principle of ahead of time, for some decades of years in advance fabrication and installation into reactor vessel the sets of surveillance specimens (SS) without taking into account quantitative and qualitative changes of norms; state of the present-day science, testing methods and technique contradict to request of RPV operational monitoring technologies innovative development during long-term light water reactor (LWR) operation. We propose to improve LWR SPs by means of passage from existing «hard» SPs to «flexible» manageable SPs (MSP) that would give the possibility of SP adaptation to requirements of time and to strengthen technical and scientific potential of investigators and researchers in the future. So, we believe that is no sense to leave present-day level of knowledge and technology in congeal state to next generation of researchers. Thus for new LWRs with the service life of 60 and more years we propose pass on from the SSs of routine nomenclature to MSP i.e., sets of archive materials coupons placed in non-hermetic containers and cooled directly by running water. It gives a perspective in case of need put into practice an innovative MSP taking into account the state-of-the-art safety standards, technical progress, present day level of science and technology.

PDF

Share this article

arrow_upward arrow_upward