GET THE APP

..

Bioceramics Development and Applications

ISSN: 2090-5025

Open Access

Hydroxyapatite and Bioglass for Applications in the Biomedical Field: A Review of Current Biomaterials Development

Abstract

Karewlin Furtoak*

Two high-level fusion and two sequential hybrid strategies were also tested. MIR outperformed XRF when it came to inorganic properties (RPIQV for clay=3.4, silt=3.0, and sand=1.8) in the field under investigation, while MIR was superior for organic properties (RPIQV for total OC=7.7 and N=5.0). For these properties, there was little to no improvement in accuracy with even the optimal fusion approach. The large number of elements with variable importance in the projection scores >1 (Fe, Ni, Si, Al, Mg, Mn, K, Pb (clay only), and Cr) and strong spearman correlations (0.57 rs 0.90) with clay and silt account for the high XRF accuracy for these materials. When comparing the best single spectrometer to the optimal fusion method, relative improvements in spectrally inactive properties based on indirect prediction mechanisms were marginal for pH (3.2% increase in RPIQV versus MIR alone), but more pronounced for labile OC (9.3% vs. MIR) and CEC (12%). Performance was worse when a subpar spectrometer dominated in a fusion approach compared to the best single spectrometer. 

HTML PDF

Share this article

Google Scholar citation report
Citations: 1050

Bioceramics Development and Applications received 1050 citations as per Google Scholar report

Indexed In

 
arrow_upward arrow_upward