GET THE APP

..

Journal of Tissue Science and Engineering

ISSN: 2157-7552

Open Access

An in vitro Study to Assess the Potential of a Unique Micro porous Algal Derived Cap Bone Void Filler in Comparison with Clinically-Used Bone Void Fillers

Abstract

PJ Walsh, SA Clarke, J Nelson, CA. Maggs, GM Walker and FJ Buchanan

Macroporosity(>100?m) in bone void fillers is a known prerequisite for tissue regeneration, but recent literature has highlighted the added benefit of microporosity(0.5 - 10?m). The aim of this study was to compare the in vitro performances of a novel interconnective microporous hydroxyapatite (HA) derived from red algae to four clinically available macroporous calcium phosphate (CaP) bone void fillers. The use of algae as a starting material for this novel void filler overcomes the issue of sustainability, which overshadows continued use of scleractinian coral in the production of some commercially available materials, namely Pro-Osteon TM and Bio-Coral ® . This study investigated the physicochemical properties of each bone voidfiller material using x-ray diffraction, fourier transform infrared spectroscopy, inductive coupled plasma, and nitrogen gas absorption and mercury porosimetry. Biochemical analysis, XTT, picogreen and alkaline phosphatase assays were used to evaluate the biological performances of the five materials. Results showed that algal HA is non-toxic to human foetal osteoblast (hFOB) cells and supports cell proliferation and differentiation. The preliminary in vitro testing of microporous algal-HA suggests that it is comparable to the four clinically approved macroporous bone void fillers tested. The results demonstrate that microporous algal HA has good potential for use in vivo and in new tissue engineered strategies for hard tissue repair.

PDF

Share this article

Google scholar citation report
Citations: 608

Journal of Tissue Science and Engineering received 608 citations as per google scholar report

Journal of Tissue Science and Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward