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Abstract
In this paper, we study the retention and investment strategy in a time-inconsistent model for optimal decision problem under stochastic differential 
game framework. The investment portfolio includes multi-risky assets, whose returns are assumed to be correlated in a time-varying manner 
and change cyclically. The claim losses of insurance companies and investment are also assumed to be correlated with each other. Extended 
HJBI equations result in a solution to the portion of retention and an optimal portfolio with equally weighted allocations of risky assets, which is 
demonstrated first time theoretically. An optimal control bound is proposed for monitoring and predicting the optimal wealth level. The proposed 
model is expected to be effective in making decision for investment and reinsurance strategies, controlling, and predicting optimal wealth under 
uncertain environment. In particular, the model can be applied easily in the case of very high dimensional investment portfolio.

Keywords: Stochastic differential game • Time-varying correlation • Extended HJBI equation • Equally weighted investment strategy • Investment 
and reinsurance

Introduction

The optimal-decision problem in investment and reinsurance has 
attracted many attentions from academia and industry. Most literatures use 
time-consistent dynamic programming, establish, and solve Hamilton–Jacobi–
Bellman (HJB) equations to obtain optimal solutions. Browne studied optimal 
investment decisions for a firm with an uncontrollable stochastic cash flow. 
Applied Cramer-Lundberg model for the risk process of an insurance company 
and used Geometric Brownian motion to model the investment in a risky asset 
(market index) from the surplus of the insurance company (as a measure of 
wealth of the insurance company). Studied optimal investment strategies for 
an insurance company receiving a constant-rate premium and used compound 
Poisson process to model the total claims to minimize the probability of ruin 
of insurance company. Browne (2001) studied two investors with different 
and possibly correlated investment opportunities under stochastic dynamic 
investment games in continuous time. The work of by introducing the worst-
case portfolio optimization (with a market crash) in exponential utility of terminal 
wealth. Discussed the optimal proportional reinsurance and investment with 
multiple risky assets and no short positions. 

Cao and Wan studied the optimal proportional reinsurance and investment 
strategies with Hamilton-Jacobi-Bellman equation. Minimized the convex 
risk of the terminal wealth of a market portfolio with a risk-free asset and a 
risky asset on a jump diffusion market under stochastic differential game. 
used similar stochastic differential game to model the relationship between 
an insurance company and the market; they used Max-Min strategy on the 
expectation for the utility of the terminal wealth to get the optimal investment 
and reinsurance strategy under uncertain environment. Applied the same 

differential game as in Zhang and Siu on the time-consistent optimization 
problem of retention and multiple-type loss-independent investment portfolio 
under uncertain environment. All the studies above have several limitations: 
(1) most of them considered only one risky asset and non-negative return rate 
due to the Geometric Brownian assumption for the return rate; (2) investment 
and the claim loss are considered to be independent processes except a 
few studies. Most of the previous studies applied time-consistent dynamic 
programming. However, it is usually the case that risky assets invested in 
capital market are correlated with each other; the investment returns are 
generally cyclical changing and can be negative sometimes, in fact, the return 
rates of investment funds in stock markets can be negative, especially at the 
time when economy experiences recession or crisis; the investment and claim 
loss may be correlated with each other; insurance companies are generally 
ongoing business and their surplus at terminal time is state-dependent and 
time-consistency is not satisfied due to non-Markovian setting.

The time-inconsistency of stochastic optimization problem is not allowed 
for a Bellman optimality principle. The following for the first time, proposed 
multi-variate Vasicek model with time-varying correlation for the return rates of 
multi-risky assets of Defined Benefit pension plan, but the time-inconsistency 
doesn’t play any role in their model. Obtained a general stochastic 
Hamilton-Jacobi-Bellman (HJB) equation for general coupled system of 
forward-backward stochastic differential equations with jumps. Applied time-
inconsistent stochastic control in continuous time within a theoretical game 
framework and extended the standard Hamilton-Jacobi-Bellman equation to 
obtain the solution of the strategy and the value function at the equilibrium 
[1-22].

This paper establishes a time-inconsistent model under stochastic 
differential game framework with time-varying correlated risky assets. HBJI 
equation is established with loosened conditions of standard HBJI equation 
and state-dependent value function at terminal time. The solution of the 
extended HJBI equation results in optimal strategy of the portion of retention 
and equal weighted risky-asset investment. Control bound is proposed for 
monitoring and predicting the optimal wealth level for a finite time horizon. In 
fact, insurance companies are generally going concern businesses, and their 
life term is uncertain, hence it is difficult to determine their surplus at a 
terminal time. When wealth level is close to the lower bound or tends to move 
to the lower bound, the adjustment needs to be taken and new decision 
should be made based on the adjustment. The model presented in this paper 
is effective 
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in the decision-making of investment and reinsurance strategies and in the 
control and prediction of optimal wealth under uncertain environment.

The remainder of this paper is organized as follows: section 2 gives the 
insurance and investment models; section 3 gives the extended Hamilton-
Jacobi-Bellman-Isaacs (HJBI) equation and solution for the optimal investment 
and reinsurance strategies; section 4 presents results of our numerical 
analyses; section 5 concludes this paper.

Methodology

The insurance and investment models

The following presents the notation we use:

C(t): Risk process of an insurer at time t

R(t): The surplus process (excluding investment) of insurance company 
at time t

(t): The proportion of retention of proportional reinsurance at time t

p0: The net premium rate

: The safety loading of insurance premium

:The safety loading of reinsurance premium

W1(t): The Brownian Motion for claim loss

W2(t):  The Brownian motion for investment return rate

D: The standard deviation of claim loss

i(t): The proportions of the risky asset in investment portfolio at time t

Xt: the surplus or wealth of the insurer at time t

(t): the amount of risky-asset investment

rf:  the risk free interest rate

ri(t): Return rate for risky assets i at time  t

Let C(t): be modeled is a manner similar to Promislow and Young (2005):

(1)

and let surplus process R(t) be modeled as 

  (2)

Where  ≥ .

Note that the Brownian motion model (continuous) of the claim process is 
the limit of the discrete compound Poisson model [8]. Borrowing at the risk-free 
interest rate is not allowed, i.e., Xt   is not allowed to be negative for all t≥0, the 
amount invested in risky assets cannot be greater than the wealth level. Let (t) 
be the amount invested in risky assets.

Assume that the return process of risky asset ri(t) for  i=1,2,…,n, at time 
follows the [23,24]. Stochastic process: π

 
2( ) i

i i i i idr m b r dt dW                                                             (3)

Where ri the return is rate of the i-th risky asset, and wi
2 (t), i=1,2,…,n, 

are mutually dependent standard Wiener process defined on ( ,F,{Ft}t≥0,P).

For simplicity, it is assumed that the underlying filtration, Ft coincides with one 
generated by the Wiener process, that is, Ft = (W2 (s):0≤s≤t) and  denotes
the volatility matrix.

If mi=m, then we have:

                                                    (4)

The return of investment portfolio can be described with Vasicek model as:

                (5)

where r is in instantaneous volatility of randomness measure of the
return rate of investment portfolio, br is the long term equilibrium return rate 
of investment portfolio, br - r is the gap between its current rate of return and 
its long-run equilibrium level and m is a parameter measuring the speed at 
which the gap diminishes. The diversified portfolio consists of n types of risky 
investments, the fraction invested in i-th risky investment is ai, i=1,2,…,n, or 
 ),,( 21 n  and

The return on risky asset i follows stochastic differential equation (3) and 
the return rate of the portfolio of risky assets is

                                    (6)

The differential of the portfolio return of risky assets is 
 

2 2
1 1 1 1

( ) ( )
n n n n

i i
i i i i i i i i i i i i i

i i i i
dr m b r dt dW m b r dt dW  (7)

If the correlation between zi and zj, pij then the variance of the portfolio 
return is

2 2

1 1 1 1

n n n n

t i i i i i j i j ij
i i i j

i j

V r                                       (8)

And the standard deviation is

2 2

1 1 1

n n n

r k k i j ij i j
k i j

i j

(9)

As in Momon (2004), the expected return rate of risky investment portfolio 
is

1 1 1
( ) ( ) ( ) (0) 1 ,i i

n n n
m t m t

r i i i i i i i
i i i

E r t E r t e r b e                (10)

Where i(t) is the expected return rate of i-th risky asset at time  in real
world measure and ri(0) is the return rate of i-th risky investment at t=0. Let  

                               (11)

where  is the volatility of the return rate of i-th risky asset under the 
real world measure,

                                   (12)

And  is covariance between i-th risky asset and j-th asset under the 
real world measure,

( )( ) 1 i jm m ti j
ij

i j

t e
m m                (13)

For the proof of equation (13), please see Appendix A.

Based on Mamon (2004), also satisfies 

the stochastic differential equation:  where  
iB  is 

i-dimensional standard Brownian Motion,  1,2, ,i n , and the return rate

of risky investment portfolio  satisfies

                                                              (14)

Let  { ( ) / [0, ]}DX t t T  be the wealth process of the insurance company for the 
strategy . The insurer uses the self-financing strategy. Based on equations 
of (2) and (14), insurer’s wealth follows the equation below:

 
0 1( ) ( (1 )( ( )(1 ) ) ) ( )) ( ) ( ) ( ) ( )D r r r DdX t p a t p a t dt t dB t a t dW t                   (15)

With a boundary condition of X9
D(0)- , and

 
1( ) ( )rdW t dB t dt (16) 

where

where

where
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where 

1{ ( ), ( ) / 0}rB t W t t are standard Brownian motions on a filtered 

probability space ( ,F, {Ft} t≥0, P), Ft is the P-augmentation of the natural 
filtration,  is the coefficient of correlation between Br(t) and W1(t) and ≤0;
the total amount invested in risky investment, (t), is a measurable control 
process adapted to the filtration {Ft}t≥0, satisfying: 

.                  (17)

Assume that (t) is a non-negative measurable process adapted to the
filtration {Ft}t≤0, satisfying equation (15), that is,

2

0
( ) ,P - .

T
a t dt a.s                                                                                                                 (18)

And the wealth equation (15) has unique optimal solutions of ((t),a(t),a(t))..

Extension of HJBI equation and solutions of optimal investment and 
retention of reinsurance

We let D be the set of admissible controls by the market and let  for the
set of admissible strategies ( ,a, ) of the insurance company. For any 
T<∞, a process  { ( ) / [0, ]}t t T satisfies the condition of 

 
2

0

( )
T

t dt  and (t) ≤ 1. 

For each D, F-adapted process { D(t)∕t ≥ 0} is a real-valued process defined 

on ( ,F, {Ft} t≥0, P)  as:

1( ) ( ) ( ) ( ) ( )
t t t

2
D r

0 0 0

(t)= exp - u dW u - u dB u - u du ,                                    (19)

By Ito’s differentiation rule, we obtain
 

1( ) ( ) ( ) ( ) ( ) ( )D D rd t = t - t dW t - t dB t ,   (20)

Where D(0)=1. Here D(t)  is a ( ,F, {Ft} t≥0, P) local martingale, and 
satisfies E( D(t))=1. For each D, a new (real-world) probability measure
P , which is absolutely continuous with respect to P, is defined on (Ω,F(T)) by 

 ( ) .DdP = T dP                                                                              (21)

The optimal problem of the insurance company can be formulated as a 
two-player, zero-sum, stochastic differential game as in [7]. The measure 
is the control of one player (the “market”), while the investment portfolio and 
retention of reinsurance ( a,) is the control of player two (the insurer). We 
define a vector process by:

 , ,
0 1 2

1 2

( ) ( ), ( ), ( ) ' , ( ), ( ) '

(0) ( , , ) '

D D D D
D D

D

dV t dV t dV t dV t dt dX t d t

V v s v v
              (22)

The optimization problem is formulated to Min-Max expectation for the 
utility of the terminal wealth. Given the initial time, t0, the initial wealth of 
the insurer, X0, the objective function over the class of admissible controls 
( ,) ( x ) is given by

 , ( ), ( )), ( ) ; ( ) ( ( ), ( ))D D D DP
J t X T A t t E T U t,X T A t     (23)

In a manner similar to the work in [25] the process A(t) is defined as
T

t

dsstA )()( 2 ,

Where
 

)(
)(

s
s

r

r
s  and r(s) and r(s). Satisfy equations (10) and (11),

respectively. Therefore r(t). in stochastic differential equation (15) can be 

replaced by (t) r(t). Then performance process is defined to be dependent 
on A(t) and D(t) as:

 , ( ) ( ) ( , ( ), ( ))D D DP
v A t E T U t X T A t .           (24)

Where X9
D(T) is defined by equation (15) and D(t) is defined by equation 

(19).

Since 2( ) ( )
T

T

A T s ds  and ( ) 1DE T , the utility does not really depend 

on A(T), we can transform the utility of state-dependence into the one with 

state-independence. Although the utility at terminal time is state-independent, 

it is difficult to assure that the performance process defined by equation 
(24) satisfies time-consistent condition at the whole state space ( x ).
Therefore, the defined form of D(T)U(t,X9

D(T),A(t)) may not be suitable
for dynamic programming. We here assume that our performance process

D(T)U(t,X9
D(T),A(t)) doesn’t satisfy time consistency and the control can be

restricted only to admissible feedback control. Our objective is to min-max
EP( D(T)U(t,X9

D(T),A(t)) for each (t, v1, v2), which can be proved to be the case
in theorem 1. Our optimal control is not strictly optimal based on the dynamics

of the process. However, for any twice continuously differential function

 1, ( ) ( )n
Dh C O C O , where and  O denotes

the closure of O, there exists a partial differential operator  ,
1 2[ ( , , )]D DL h s v v :1

2
, 2 2 2 2

1 2 0 2
1 1

2 2
2 2

2 2 2 2
2 1 2 2

1[ ( , , )] ( ( ) ) ( 2 )
2

1+ + ( ) +
2

D D D
D D r r r D D

D D D
r D

h h hL h s v v p a a a
s v v

h h hv v a v
v v v v

(25)

According to Mataramvura and Âksendal (2008) and Bjork T, et al. [15], it 
is not Difficult to get the following verification theorem

Theorem 1: Suppose that there exists a function 1,2 ( ) ( )D C O C O , a 
function g(T,t) and an admissible feedback control *, *) Dx   such that

1. 
, *

11 2 ,( , , ) + ( ( ) ( , ( ), ( ))) 0D D t v D DL t v v E T U t X T A t  for all D  and v O ; 

2.  
*,

21 2 ,( , , ) ( ) ( , ( ), ( )) 0D D t v D DL t v v E T U t X T A t  for all  and v O ; 

3.  
*, *

1 21 2 , ,( , , ) ( ) ( , ( ), ( )) 0D D t v v D DL t v v E T U t X T A t  for all v ; 

4.  The value function is determined by extended HBJI defined by equation (27). 

5. since 2( ) ( ) 0
T

T

A T s ds , for all 

,( , ) ,( , ) ,( , ) ,( , )
2 1 2 1( , ) : lim ( ( ), ( ) ( )) ( ) ( (0));D D D D

D Dt T
V t V t ,A t V T U V  

6. Let K denote the set of stopping times .T  The family ,( , ){ ( ( )}D
D V is uniform integral for all 

1 2( , , ) , ( , ) Dt v v O . 

Then D(t,v1, v2)=U(t, v1, v2)) and ( *, ) is an optimal control [26,27].

Proof:

First, the value function is proved to be determined by extended HBJI 
equation as followings. The Ito formula is applied to the performance process 

D(t)U(t.X9
DMA(t)). Expectation of the integration yields:

,
1 2( ) ( , ( ), ( )) ( , ( )) ( , , )

T

D D D D
t

E t U t X T A t v A t E L s v v ds
,

Where the stochastic integral part has vanished because of the integrability

Then, ,
1 2( , , ) ( ) ( , ( ( )) ( , ( ))

T

D D D D D
t

E L s v v ds E T U t X A T v A t ,

Therefore, we obtain the desired result:
 ( , ( )) , ( ), ( ), ; ( *, *)D D Dv A t J t X T A t .

Second ( *,*) is proved to be the supremum in the value function and is 
proved to be an admissible feedback control as follows.

Choose ( ,) D , then, for h>0, a randomly chosen initial state (t,v1,v2)
and define the control law ( h, h) as

1 2 1 2 1 2
1 2 1 2

1 2 1 2 1 2

( , , ), ( , , )       for , ( , )
( , , ), ( , ,

*( , , ), *( , , )   for + , ( , )h h

s y y s y y t s < t h y y
s y y s y y

s y y s y y t h s T y y

Furthermore, we obtain:

where

where

where
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1

1

,

,
,

( ; ( , )) ( ( + ), ( ), ( ))                      

                     ( ) ( , ( + ) ( ))

h

h h

h t v D D

t v D D

J v E J t +h,X t h A t h t

E t U t h X t h A t +h
.

Since h=  on [t,t+h] and h= *on [t+h,T], we have 

 ( ( + ) ( ), ( ), ( , )) ( ) ( + ( + ) ( ))h h
D D h D DJ t +h,X t h A t h t t U t h,X t h A t h ,

Then we obtain

 ( ( + ) ( ), ( ), ( , )) ( ) ( + ( + ) ( ))h h
D D h D DJ t +h,X t h A t h t t U t h,X t h A t h

Furthermore, from equation (23) we have , *

1 2( , , ) 0D DL t v v .

It gives us that

 
1, ( ) ( ( + ) ( )) ( , ( )) ( )h

t v D D DE t U t h,X t h A t h v A t h

Combining this with expression for  ( , ( ); ( , ))hJ v A t above and the fact that

 ( , ( )) ( ); ( *, *)D v A t J v,A t ,

We obtain ( , , ( ); ( , *)) ( , , ( ); ( , )) ( )hJ t v A t J t v A t h .

So  ( , , ( ); ( , *)) ( , , ( ); ( , ))liminf 0hJ t v A t J t v A t
h

Similarly, we obtain:

 
2

2

,

, 1

( ( ); ( , )) ( ) ( ( ), ( ))                      

                     ( ) ( , , ( ))

h

h

h t v D D

t v D

J v,A t E t h J t,X t A t

E t h U t v A t.

Since  h=  on [t,t+h] and  h= * on [t+h,T], we have  D
h(t+h)= D (t+h)

 
and 

 ( ( ), ( ), ( )) ( ) ( ( ), ( ( ))h h
D D D DJ t +h,X t A t t h t h U t,X t A t ,

Then we have
 

2,( ( ); ( , )) ( ) ( ( ), ))                      h
h t v D DJ v,A t E t h U t,X t A( t

Furthermore, from equation (23) we have *,

1 2( , , ) 0D DL t v v . It 
gives us that

 
2, ( ) ( ( ), ( )) ( , ( )) ( )h

t v D D DE t h U t,X t A t v A t h
Combining this with expression for J(v,A(t):( h, )) above and the fact that

 ( , ( )) ( ); ( *, *)D v A t J v,A t ,

We obtain ( , ( ); ( *, )) ( , ( ); ( , )) ( )hJ v A t J v A t h .

So 
 ( , ( ); ( *, )) ( , ( ); ( , ))liminf 0hJ v A t J v A t

h
Then,  ( , ( )) ( , ( ); ( *, *))D v A t J v A t .

This f in ishes the proof.

The optimal investment problem is formulated to Min-Max expectation of 
the exponential utility of the terminal wealth of an insurance company. Since 
the utility function is dependent on the present states ofv=(t,v1,v2), the condition 
of HJBI equation is not satisfied. In order to obtain the optimal value function 

*(v,A(t)) and the optimal strategy ( *, *,a* *), an extended HJBI equation is 
built as follows which is similar to Bjork T, et al. [7] 

 

1 2

1

, , ,
1 2 , ,

( , , )

1 2 2

( , , ( ( ) ( , ( ), ( )) 0
.

( , , ) (0)

supinf
D

a
D t v v D D

a

v

L s v v E T U t X T A t

U T v v v g e

                    (26)

A value function of exponential form as in (27) is taken to solve the equa-
tion above.

f D (s,v1,v2 ) = v2 exp( gv1)g(T s) ,                                                       (27)

Where  is the coefficient of risk aversion, g(T-s) is an undetermined func-

tion with  
)(
)()(

s
ss

r

r  and the boundary condition: g(T-T)=1.

   (a, ) and substitution of value function (27) into equation (26) result 
in the differential operator:

 , , ,
1 2

2
0

1 2 2 2 2 2 2

[ ( , , )]

/ ( ) (1+ ) (1 ) + + ( )
( , , ) 1 ( 2 )

2

a
D

s r r D

D

r D r D

L s v v

g g T s p a p a a
s v v

a a

      (28)

We cannot show from equation (27) that  

           (1)    
 , , , , , , , ,

1 1( ( 1)) ( ( 1)) ( ( )) ( ( ))

for , ,such that ( ) ( )

D D D D
t m t n t m t n

n m m n

U V t U V t U V t U V t

V V V t V t

Due to the following facts: from equation (30), we will know that it is not 

always the case that  1 2, , ( ) , ( ), ( ) 0t v v D DE t U t X t A t

(2)  , , , ,( ) ( ) ,0D D
t t sU V t U U V s t s T .

Therefore, we can only construct the extended HJBI equation because 
acceptable time-consistence cannot be satisfied. Combination of equation (28) 
and equation (26) leads to extended HJBI equation (29) as following:

q D

inf
( ,a ,a i 1,2,..n)

sup
f D (s,v1,v2 )

gs / g(s) p(1+ d ) a(1 h ) h p0a mr g+q+qr ( s r as D )g 2

1
2

( 2s r
2 s D

2 a2 2r s rs Da )g 2

+Et ,v1,v2
( D

q (T )U (s,X D
J (T ), A(s)))

 
0

                      (29)

Since ( ) ( ) 0
T

T

A T s ds , we have ( ) (0)X T X x , and 

1 2 1 2

2
1

1 1

1 2

, , , ,

( ) ( ) ( ) ( ) ( )

, ,

( ) ( ( ), ( )) ( ) ( (0), ( ))

- ( - ( )

T T T

r
T T T

t v v D D t v v D D

- u dW u - u dB u u du
v v

t v v

E T U X T A s E T U X A s

E e e g T s e g T s
 (30) 

Equations (29) and (30) indicate that D(s,v1,v2) ≠1 is the sufficient and neces-
sary condition for the existence of optimal solutions [1]. It is necessary to make 
v1 and v2 different from zero [8]. Maximization over ( a,) with fixed 

D leads to the following first order conditions for the maximum point 
(( ),a( ),a( )) as equations of (31), (32) and (34), respectively:

 ^ ^
0

2 2

( (1 )(1 ) ) ,
(1 ) (1 )

D r r

r D r

p p
                              (31)

 ^
00

2 2 2

2 ^

(1 )(1 )(1 )(1 ) 1
(1 )

            + ,
(1 )

r

D r D D

D

p pp pa

                    (32)

 

                        (33)

Equation (33) can be written as following simplified form:

 

(Please note that the following equal weights is deducted from the non-partially 
differential  related term,  and other non-partially differential   related terms 
in right hand side of equation (33)) and at the same time, the constraint condi-

tion 
 

1
1

n

i
i

 is satisfied as well.

It is implied that only when  and .   can the 
equation (33) hold. Therefore, we have optimal proportions of risky assets in-

 , ( ), ( )a
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vested satisfy:

 
1 2

1*= *= * , 3n n
n

,                                                        (34)

That is, optimal proportion of risky assets invested is equally weighted 
when n≥3.

Putting equation (34) into equations of (10) and (11), respectively, we have

 

11 2

1 ( (0) ( 1)i i

n
m t m tr r r

i i
in

e r b e
n                        (35)

 2

1 1 1

1 2 2

1 1 1

= =

n n n

i ij
i i j

i jr r r
n n n

n
i ij

i i j
i j

                            (36)

Although equally weighted investment strategy is usually thought of as a 
feasible and convenient investment strategy, it has never been demonstrated 
theoretically to be an optimal investment strategy under some conditions. Here 
our theoretical proof has demonstrated the possibility of the equal-weight in-
vestment as an optimal strategy. It is especially important to notice that equal 
weights can simplify greatly the optimization process.

Combination of equations (31) and (32) with equations (29) and (30) and

Minimization over  result in equation (37):
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We can easily obtain the optimal solution of (t)  by solving equation (37) 
with the equally weighted investment portfolio. Putting optimal solution of  into 
equations (31) and (32), results in the optimal amount invested in risky assets 
and the optimal
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Where  is the net premium rate and p0 is the claim loss rate.

The lower control bound with (1- ) confidential level is obtained by com-
bining equations (38) and (39) as following:
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Integration of two sides of equation (42) and application of the boundary 
condition g(T, T)=1 result in the formula for g(t):
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We also analyze the case when â( ,t)≤0. If â( ,t)≤0, we should choose 
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That is, optimal proportion of risky assets invested is equally weighted 
when n≥3.
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Although equally weighted investment strategy is usually thought of as a 
feasible and convenient investment strategy, it has never been demonstrated 
theoretically to be an optimal investment strategy under some conditions. Here 
our theoretical proof has demonstrated the possibility of the equal-weight in-
vestment as an optimal strategy. It is especially important to notice that equal 
weights can simplify greatly the optimization process.
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We can easily obtain the optimal solution of (t)  by solving equation (37) 
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Where  is the net premium rate and p0 is the claim loss rate.

The lower control bound with (1- ) confidential level is obtained by com-
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Although equally weighted investment strategy is usually thought of as a 
feasible and convenient investment strategy, it has never been demonstrated 
theoretically to be an optimal investment strategy under some conditions. Here 
our theoretical proof has demonstrated the possibility of the equal-weight in-
vestment as an optimal strategy. It is especially important to notice that equal 
weights can simplify greatly the optimization process.

Combination of equations (31) and (32) with equations (29) and (30) and
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We can easily obtain the optimal solution of (t)  by solving equation (37) 
with the equally weighted investment portfolio. Putting optimal solution of  into 
equations (31) and (32), results in the optimal amount invested in risky assets 
and the optimal

Portion of retention of reinsurance =
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The optimal wealth process can be expressed as:
 ^ ^ ^ ^ ^ ^ ^ ^

0 1 2( ) [ (1+ )( (1 ) )- ] ( ) ( )D r r Dd X t p a p a dt dW t a dW t               (38)

 ^ ^
2^ ^ ^

1 0
^

0

( ) ( ) ( )
var ( ) ( ) ( ) *

( )

n

t i i r
i

D D D
D

r

s r s s
p pX t X s E X s ds

s
2                                              (39)

Where  is the net premium rate and p0 is the claim loss rate.

The lower control bound with (1- ) confidential level is obtained by com-
bining equations (38) and (39) as following:
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Where LCL(t) is lower bound of wealth at time t(t ≤ T, and T is control 
period), VAR(XD

9* (t)) is deviation of optimal wealth, m  is the critical value with 
1(- ) confidential level, while r and r  satisfy equations (10), (11) and (34), 
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Integration of two sides of equation (42) and application of the boundary 
condition g(T, T)=1 result in the formula for g(t):
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We also analyze the case when â( ,t)≤0. If â( ,t)≤0, we should choose 
â( ,t)=0 as an optimal strategy. Substitution of â=0 into equation (30) results 
in equation (48):
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Although equally weighted investment strategy is usually thought of as a 
feasible and convenient investment strategy, it has never been demonstrated 
theoretically to be an optimal investment strategy under some conditions. Here 
our theoretical proof has demonstrated the possibility of the equal-weight in-
vestment as an optimal strategy. It is especially important to notice that equal 
weights can simplify greatly the optimization process.

Combination of equations (31) and (32) with equations (29) and (30) and
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We can easily obtain the optimal solution of (t)  by solving equation (37) 
with the equally weighted investment portfolio. Putting optimal solution of  into 
equations (31) and (32), results in the optimal amount invested in risky assets 
and the optimal
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Where  is the net premium rate and p0 is the claim loss rate.

The lower control bound with (1- ) confidential level is obtained by com-
bining equations (38) and (39) as following:
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We also analyze the case when â( ,t)≤0. If â( ,t)≤0, we should choose 
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The optimal strategy ( *,*, *)=( , , )  is given by equations (31), (32), 
(34) and (37), and the optimal value function is:

 2
1 2 2( , ) ( ) vt,v v v g T t e

,        
                    (50)

Where g(T-t) is given by equation (44).

When a(t)=0, the optimal strategy ( *, *, *)=( , ) is given by equa-
tions (47), (48) and (34). The optimal value function satisfies equation (50) 
where g(T-t)  is given by equation (49).

Results and Discussion

Numerical analysis

The data of annual return rate of S & P 500, Treasury Bonds and Treasury 
Bills in U.S. from 1965 to 2014 is used in multi-variate Vasicek model. The re-
sults are displayed in Table 1. Please note that Table 1 includes the estimated 
values of three parameters and asymptotic errors of both Vasicek models [28].

For other data, please see Table 2. Table 3 lists optimal solutions of 
amount invested in risky assets, *, portion of retention, a1* and proportions of 
stocks, Treasury Bonds and Treasury Bills 1 2*, *  and 3*. . Table 3 lists the 
optimal solutions for different time t. Table 3 indicates that the optimal amount 
invested in risky assets first decreases and then increases with time, but the 
optimal portion of retention first increases and then decreases with time. Of 
course, the optimal solutions can be obtained for other terminal time T. Since 
insurance business is generally on-going business, which means that the life 
time is uncertain, it is important to obtain the optimal solutions for varying ter-
minal time. In the following section, sensitivity analyses are carried out to the 
changes of the important parameters.

Varying parameters of D,  and 
Figure 1(a) displays the change pattern of time-varying correlation among 

risky assets invested. Figure 1(b) through (g) shows the change patterns of 
optimal solutions of the amount invested in risky assets and the optimal portion 
of the retention for different values of the volatility of claim loss, D, the rate of 

(e) indicate that increase in the rate of reinsurance cost will greatly decrease 
the optimal amount invested in risky assets but greatly increase optimal portion 
of the retention. Figure 1(f) and Figure 1(g) show that both optimal amount of 
investment and optimal retention decreases with the increase of risk aversion, 
which is intuitive (Figures 1a-1g).

Varying parameters of i and bi,i=1,2,3.

Figures 2(a) through (d) display the change patterns of optimal solutions 
of the amount invested in risky assets and the optimal portion of the retention 
with the change of volatilities and the means of long term return of risky as-
sets invested, i and bi,i=1,2,3. Figures 2(a) and (b) indicate that both optimal 

Table 1.The values of parameters and asymptotic error of Vasicek model estimated 
using historical data in U.S. from 1965 to 2014.

MLE S&P Estimation
Error

Treasury
Bond

Estimation
Error

Treasury
Bill

Estimation
Error

Estimation (mi) 4.9677 0.2389 2.4594 0.0654 0.1664 0.0085
Estimation (bi) 0.1134 0.0240 0.0985 0.0221 0.0509 0.0042
Estimation ( i) 0.5348 0.2624 0.3473 0.0248 0.0171 9.0248 × 10-10

Table 2. Other values of parameters in the example. 

Parameters Values
The coefficient of correlation        -0.2
The average rate of claim loss     p0 0.15
The volatility of claim loss            D 0.21
The coefficient of risk aversion      2
The net premium rate                   p 0.15
The loading of premium              0.05
The cost rate of reinsurance       0.1
The initial investment               X(0) 1
The terminal time                      T 15

Table 3. The optimal solutions when time t changes.

t 1 2 3 4 5 6 7 8
*= 3.237 3.132 3.164 3.202 3.235 3.264 3.288 3.308

a*= 0.573 0.561 0.564 0.568 0.572 0.575 0.577 0.579
t 9 10 11 12 13 14 15
*= 3.325 3.34 3.352 3.362 3.371 3.379 3.385
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Figure 1 (a). Time-varying correlation among risky assets invested.

reinsurance cost, , and the coefficient of risk aversion,  Figure 1(b) and (c) 
indicate that both the optimal amount invested in risky assets and the optimal 
portion of the retention decreases with the increase of the volatility of claim 
loss. The increase of the risk of claim loss tends to make the insurer more will-
ing to increase reinsurance and put less funds in risky assets. Figure 1(d) and 

 

 

where
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amount invested in risky assets and retention portion are greater when the vol-
atility of the return of the stocks, Treasury Bonds and Treasury Bills decrease 
10%, respectively; especially they are much more sensitive to the increase in 
the volatility of the return of stocks and Treasury Bonds than that of Treasury 
Bills, that is to say, lower volatility of the return of risky assets invested will 
encourage insurers to put more funds in investment, and more remains for 
retention of reinsurance. Figures 2(c) and (d) indicate that the optimal amount 

invested in risky assets increases and the optimal portion of the retention also 
increases when the means of long term return of the stocks, Treasury Bonds 
and Treasury Bills increase 10%, respectively; the optimal amount of stocks 
and Treasury Bonds are much more sensitive to the change of the means of 
long term return of stocks and Treasury Bonds than to that of Treasury Bills; 
and the optimal retention is also sensitive to the means of long term returns of 
all of three kinds of long term risky assets (Figures 2a-2d).
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Figure 1 (b). The optimal amount invested in risky assets for different values of the volatility of claim 
loss over time.

0
5

10
15

0.2

0.25

0.3
3.1

3.2

3.3

3.4

3.5

time
the volatility of claim loss 

op
tim

al
 a

m
ou

nt
 o

f r
is

ky
 a

ss
et

s 
in

ve
st

ed

 
 

0 5 10 15 -0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Time t  

Correlation coefficient between stocks and Treasury Bonds 
Correlation coefficient between stocks and Treasury Bills 
Correlation coefficient between Treasury Bonds and Treasury Bills 

-

 

Figure 1 (c). The optimal portion of the retention for different values of the volatility of 
claim loss over time.
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Figure 1 (d). The optimal amount invested in risky assets for different values of the rate 
of reinsurance cost over time.
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Figure 1 (e). The optimal portion of the retention for different values of the rate of 
reinsurance cost over time.
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Figure 1 (f). The optimal amount invested in risky assets for different values of the 
coefficient of risk aversion over time.
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Figure 1 (g). The optimal portion of the retention for different values of the coefficient of 
risk aversion over time.
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Vary parameters of 
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Figure 2 (a). The optimal amount invested in risky assets for different values of the 
volatility of risky assets over time ( =-0.2). 
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Figure 2 (b). The optimal portion of the retention for different values of the volatility of 
risky assets over time ( =-0.2).
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Figure 2 (c). The optimal amount invested in risky assets for different values of the 
means of long-term return of risky assets over time ( =-0.2).
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Figure 2 (d). The optimal portion of the retention for different values of the means of 
long-term return of risky assets over time ( =-0.2).
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Figure 3 (a). The optimal amount invested in risky assets for different values of the 
correlation coefficient between investment and claim loss over time (b1 and b1(1-0,1).
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Figure 3 (b). The optimal portion of the retention for different values of the correlation 
coefficient between investment and claim loss over time (b1 and b1(1-0,1).

Figure 3(a) through Figure 3(d) display the change patterns of optimal 
amount investment and optimal retention portions when the correlation coeffi-
cient between investment and investment return rate of long term and volatility 
changes. Figure 3(a) through Figure 3(d) show that the optimal amount of risky 
investment decreases with the increase of correlation coefficient between in-
vestments and claim loss. However, optimal retention portion of reinsurance at 
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Figure 3 (c). The optimal amount invested in risky assets for different values of the 
correlation coefficient between investment and claim loss over time ( 1 and 1(1-0.1).
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Figure 3 (d). The optimal portion of the retention for different values of the correlation 
coefficient between investment and claim loss over time ( 1 and 1(1-0.1).

first increases with the increase of correlation coefficients and then decreases 
with the increase of correlation coefficients (Figures 3a-3d).

Conclusion

In this paper, the optimal decision of investment and reinsurance is stud-
ied with time-inconsistence under the stochastic differential game framework. 
Multiple risky assets constitute investment portfolios; the returns of these risky 
assets follow multi-variate Vasicek model with time-varying correlation; claim 
losses are correlated with these risky assets. The solution to the extended 
HJBI equation results in dynamical optimal solutions for the amount invested 
in risky assets, the optimal portion of the retention and optimal proportions of 
all risky assets invested. A dynamical optimal bound is built for monitoring and 
predicting the optimal wealth level. The numerical analyses are carried out 
under the proposed model. The sensitivity analyses indicate that the optimal 
amount invested in risky assets in the proposed model are sensitive to most of 
the parameters except the volatility and the means of the Treasury Bills return 
at the long-run equilibrium; the optimal portion of the retention is sensitive to 
all of parameters The volatility and the means of long term returns of all three 
kinds of risky assets. Our sensitive analysis results are consistent to intuitions, 
and this demonstrates the effectiveness of our proposed model. Importantly, 
the investment with equally weighted risky assets can be an optimal strategy. 
The proposed model can be easily applied in very high dimension investment 
portfolio.

Appendix

We calculate the time varying covariance of ij (t) of the return of stocks 
and bonds. In a manner similar to Korn and Koziol (2006), andMamon (2004).
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