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Introduction

At this time, multidrug-resistant bacteria are seen as a danger to world 
health. This has rekindled interest in using bacteriophages to combat bacterial 
infections, together with the pharmaceutical industry's disinvestment in the 
development of novel-acting antibiotics and the urgent need for alternative 
therapies. This is brought on by phages' bacteriolytic abilities, which cause cell 
death. By releasing the freshly created phage particles from the infected cells 
to the environment, double-stranded DNA phages (ds DNA phages) put an 
end to a lytic cycle. They must produce lysis proteins that exert their action at 
the proper time in order to go past each barrier of the cell envelope in order to 
accomplish this. It is this ability of bacteria to lyse that is being investigated for 
usage. Entire phages or their derived proteins for therapeutic uses, biocontrol 
in the food industry, and the identification of dangerous bacteria [1].

Description

The intricate structure of the mycobacteria cell membrane distinguishes 
it from both Gram-positive and Gram-negative bacteria and gives it a special 
place in the bacterial community. Its extremely high lipid content (up to 60% 
of the CW is made of lipids) explains the highly hydrophobic cell surface 
characteristics that result in a natural impermeability to nutrients, resistance 
to many antibacterial drugs, and exceptional inflammatory activity, playing a 
key role in virulence. A CM that is physically and functionally similar to that 
of other bacteria makes up the cell envelope [2]. The CW, which encircles 
this membrane, is made up of a thin layer of PG covalently connected to an 
arabinogalactan (AG) polymer, which is then esterified to mycolic acid. acids 
(MA) composing the mycolyl-arabinogalactan-peptidoglycan complex, which is 
the CW core (mAGP). The CM and CW are separated by a periplasmic gap. 
The MAs, one of the distinguishing characteristics of mycobacteria, are long 
chain fatty acids that are a component of a membrane bilayer known as a 
genuine OM often referred to as a mycomembrane. Trehalose mono (TMM), 
di-mycolates (TDM), phospholipids, glycopeptidolipids, and lipoglycans are 
likely to make up the outer leaflet of this membrane, which is structurally 
distinct from the OM of Gram-negative bacteria. Trehalose mono (TMM) and 
di-mycolates (TDM) are significant pathogenic factors in bacteria. Last but not 
least, a layer called the outermost layer (OL), or the capsule in the case of 
pathogenic species, is primarily made up of polysaccharides and proteins with 
a trace quantity of lipids, whereas in nonpathogenic species this OL is made 
up of lipids consisting largely of proteins [3].

Phage Ms6, a temperate phage that infects the nonpathogenic 
Mycobacterium smegmatis, has the most thoroughly researched 

mycobacteriophage lysis system. Five genes, gp1 through gp5, are found 
in the lysis cassette of Ms6. In a holin-independent manner, gp1 encodes a 
chaperone-like protein that aids in the endolysin (LysAexport)'s via the host 
sec system n[4]. The lysis protein (LysB) encoded by the gene gp3 (lysB) is 
involved in the destruction of the mycobacterium OM and has lipolytic activity. 
Two holin-like proteins that are encoded by the genes gp4 and gp5 work 
together to ensure that lysis occurs at the appropriate moment. Gp5, which 
exhibits properties of class III holins, i.e., a tiny protein with two transmembrane 
domains, interacts with Gp4, which exhibits properties of a class II holin, with 
just one transmembrane domain), and it was hypothesised that this complex 
controls when lysis occurs n [5].

These five genes are not present in every mycobacteriophage lysis 
cassette, though. Most genomes lack gp1 homologues, and many only have 
one holin-like gene. While LysA coding genes have been found in all genomes, 
some genomes lack a holin gene and others lack lysB genes. However, it is 
obvious that mycobacteriophage-induced lysis is also a three-step process, 
commencing with holins activity to subvert the CM, which next activates the 
endolysin function to breakdown the PG meshwork, similar to phages of Gram-
negative hosts and because of the presence of an OM. The eradication of 
the OM is the final phase. The role of LysB is played to break the connection 
between the OM and AG. The function of the mycobacteriophage endolysins 
and LysB proteins will be covered in more detail in the next sections as they fall 
under the purview of this review [6-10].

Conclusion

The current advances in our understanding of the mechanisms of 
mycobacteriophage-mediated lysis have provided new insights into how 
mycobacteriophages break down each layer of the mycobacteria envelope and 
are important for the development of novel tactics to undermine mycobacteria's 
ability to survive. A highly effective variety of enzymatic activities could be 
offered by combining the numerous mycobacteriophage endolysin enzymatic 
activities, which are designed to destroy specific bonds within the mycobacterial 
PG. This is a tantalising prospect and merits more research. The application of 
such enzymes to M, an intracellular pathogen, presents an additional barrier. 
tuberculosis. Recently, it was shown that an endolysin was active against 
intracellular bacteria. PlyC, an enzyme from a streptococcal phage, has 
been demonstrated by the authors to be able to pass through epithelial cell 
membranes and eradicate intracellular Streptococcus pyogenes. Endolysins 
become increasingly potential for the destruction of pathogenic bacteria as 
more investigations on them are conducted. The next challenge will be getting 
the medication to the infection's source. The distribution of antibiotics and 
other antimicrobial agents, such as endolysins, which demonstrates to be 
a potent antimicrobial agent, is being investigated by a number of research 
organisations. 
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