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The Gut affects Pathophysiology and Management of 
Diabetes Mellitus Type 2: The Recent Messages from 
Intestine and Gastrointestinal Microbiota 

Abstract
The number of diabetic patients rapidly increased in the world constituting a serious health problem. Daily life alterations such as high-fat high-sugar diet and insufficient physical
exercise augment diabetes risk. Long-lasting low-grade inflammatory reactions in obese patients with metabolic syndrome are considered as an important role in the occurrence and 
advance in the stage of type 2 diabetes. Emerging clinical and experimental evidence reveals that gut dysbiosis, intestinal barrier disturbance and following metabolic endotoxemia
are firmly related to the low-grade inflammatory, insulin resistance and resultant cardiovascular complications in patients with type 2 diabetes. Gut microbiome transmitted from mother 
to child at birth is deeply affected by dietary habits in life thereafter. In the feces of type 2 diabetics, relatively frequent abundance in endotoxin producing gram-negative bacteria
and lower abundance in butyrate-producing bacteria were noted. Butyrate as an important energy source and a protector of intestinal barrier, its defect is considered to enhance
intestinal hyperpermeability and metabolic endotoxemia. Inflammation in the adipose tissue induces detrimental effects on other organs and tissues through secreted pro-inflammatory 
cytokines. Activation of Toll-like receptor 4 in immune cells such as macrophages evokes inflammation and insulin resistance, finally leading to an impairment of insulin signal and
 -cell failure. Inflammatory changes in the arterial vessels and liver lead to two life-threatening conditions, ischemic heart disease and liver cirrhosis, respectively. Careful management 
strategies to improve gut dysbiosis may stimulate effective drug treatment and lower the morbidity and mortality of patients who suffers from type 2 diabetes. A kind of biguanide
metformin is considered as an anti-inflammatory influence in addition to its glucoregulatory effect. Two newly developed diabetic drugs, Dipeptydil-Peptidase-4 (DPP-4) inhibitors and 
Sodium-Glucose Co-Transporter 2 (SGLT2) inhibitors may in combination with reasonable dietary therapy have some undetermined effect on inflammatory changes. This systemic
review summarizes the bulk of latest information published until 2021 on the pathogenesis and treatment of type 2 diabetes, especially related to gut microbial alterations. This
manuscript in addition to my previous review includes up-to-date information in diabetes mellitus type 2.
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Introduction 

The number of type 2 diabetic patients is increasing in the world these 
years. The Diabetes affects an estimated 34 million US adults, in 2020 [1,2]. 
In addition to genetic predisposition, this remarkable increase in diabetic 
patients should be caused by changes in lifestyle, i.e. diet, nutritional 
condition and physical activity [3-5]. It is now evident that the advanced 
pancreatic β-cell failure that induces the deterioration of metabolic control 
over time begins early and is existing long before the diagnosis of diabetes 
[6]. Obesity and pre-diabetes as underlying risk factors predisposing type 
2 diabetes and related complications is recommended to be targeted in 
the diabetes prevention program. Although lifestyle adjustment is basically 
indicated for every overweight and obese patient with prediabetes, useful 
pharmacotherapy can be developed simultaneously for preserving β-cell 
function in type 2 diabetics [7]. 

The potential role of the intestinal epithelial barrier dysfunction and 
increased permeability has been described these days associated with 
gut dysbiosis in various human diseases. The intestinal diseases including 
inflammatory bowel disease and irritable bowel syndrome are related to gut 

dysbiosis [8-15]. Additionally, the relations of liver, pancreas, kidney, heart 
and brain diseases together with systemic autoimmune and allergic diseases 
to gut microbiota have been described as well [16-37]. Among them, Type 
2 diabetes and gut dysbiosis should be counted as one of popular entities. 
The gut barrier derangement connected with intestinal dysbiosis is possible 
to induce the gut translocation of fragments originated from microbiome and 
the development of "metabolic endotoxemia", inducing systemic low-grade 
inflammation and insulin resistance [38]. 

Adipocytes are massive sources of bioactive substances named 
adipocytokines (adipokines) [39]. Adipokine dysregulation due to 
endotoxemia and excessive fatty acids possibly cause obesity-related 
metabolic disorders, called metabolic syndrome, a cluster of metabolic 
disturbances, including type 2 diabetes, hyperlipidemia, hypertension, 
Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis 
(NASH) [39,40]. The imbalance between excessive pro-inflammatory 
cytokines including Tumor Necrosis Factor-α (TNF-α) and defective anti-
inflammatory adipokines including adiponectin is an important etiologic 
background in the adipose tissue from fatty patients with metabolic 
syndrome [41]. 

The etiology of type 2 diabetes is firmly related to the intestine. The 
fundamental lifestyle care begins with dietary therapy, which should be 
drawn from the science of gut microbiota, because diet itself profoundly 
affects gut microbiome and finally gut dysbiosis. The effect of diabetic 
therapy is fundamentally bound by basic dietary care. As described in 
the abstract, this review introduces latest knowledge of gut dysbiosis, 
intestinal hyperpermeability, endotoxemia and their cardinal meanings in 
the fundamental therapy of subjects with type 2 diabetes. 

Gut Dysbiosis and its Implications 

Gut microbiota, as a complex intestinal "superorganism", influences 
host metabolic state modulating appetite, energy absorption, gut motility, 
glucose and lipid metabolism, in addition to hepatic fatty storage [38]. Small 
Intestinal Bacterial Overgrowth (SIBO) is defined as a condition in which 
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colonic bacteria move into the small intestine due to impaired microvilli 
function. This causes a breakdown in intestinal motility and resultant 
disturbed gut homeostasis [42,43]. Important examinations showed higher 
prevalence of small intestinal bacterial overgrowth (SIBO) (50%~77.8% vs. 
9.1%~31.2%) in NAFLD patients compared with healthy controls [44–48]. 
SIBO was further reported to be related to enhance hepatic expression of 
Toll-Like Receptor (TLR) 4 and Interleukin (IL)-8 in patients with NASH [46]. 

Related to the above findings, SIBO was also noticed in 43% of diabetic 
patients complaining chronic diarrhea and 75% had a marked improvement 
in their symptoms after being treated with antibiotics [49]. In addition, a 
group of 82 diabetic patients with carbohydrate malabsorption on an oral 
glucose tolerance test, 75% were found to reveal SIBO [50,51]. 

Accumulating data in human studies and animal experiments suggest 
that obesity and type 2 diabetes are related to a severe gut dysbiosis [52]. 
Ley et al. first found in their preliminary report that obese patients had 
higher abundance of Firmicutes and lower abundance of Bacteroidetes 
compared with lean controls [53]. Turnbaugh et al. revealed that the 
microbial alterations affect the metabolic potential of the mouse gut 
microbiome in the way that the microbiota from an obese animal shows 
an increased capacity to absorb energy from the diet [54]. They noted 
that microbiota transplantation from obese mice fed a high-fat diet to lean 
germ-free counterparts promoted greater fat deposition than recipients from 
lean counterpart donors [55]. They further disclosed that the human gut 
ecosystem in mice by transplanting human fecal microbiota into germ-free 
mice and revealed that the high-fat, high-sugar diet altered microbiota gene 
expression [56]. These mice had increased adiposity and their microbiota 
showed an increased abundance of Erysipelotrichaceae class bacteria and 
that of the Bacilli (mainly Enterococcus) within the Firmicutes phylum in 
addition to a decreased abundance of members of the Bacteroidetes [56]. In 
contrast to these clear-cut experiment results, the following clinical studies 
on the gut microbiome have given various and often contradictory results 

as reviewed in the previous article [20]. Some studies even reported an 
increased Bacteroidetes/Firmicutes ratio in obese patients [57-59]. High 
dietary fructose was related to lower abundance of the beneficial microbes 
such as Eubacterium and Streptococcus, which involves carbohydrate 
metabolism [60]. Multiple factors, including unhealthy dietary habits, can 
cause disruption of microbiota equilibrium (dysbiosis) with extra-intestinal 
metabolic disturbances including obesity and type 2 diabetes [61]. 

In addition to bacterial cells and bacterial structural components, 
bacterial metabolites also work the health and disease of the host subjects 
[20]. Human colonic bacteria decompose substrates including resistant 
starch and non-starch polysaccharides as main components of dietary 
fiber, which are not completely hydrolyzed by host enzymes in the small 
intestine [62]. The major fermentation products from this fiber breakdown 
are the Short Chain Fatty Acids (SCFAs) such as acetate, propionate and 
butyrate [62]. 

Alterations in gut microbiota presented in recent clinical studies on 
type 2 diabetes are described in Table 1. As noted in the previous review, 
the results again seem surprisingly variable, while noteworthy common 
microbiota characters are there observed [63]. Larsen et al. described 
that feces in patients with type 2 diabetes were comparably enriched with 
endotoxin producing gram-negative microbiome, belonging to the phyla 
Bacteroidetes and Proteobacteria[64]. Chinese type 2 diabetic patients 
were also characterized by an evident gut microbial dysbiosis, a decrease 
in some universal butyrate-producing microbiome (Clostridiales sp. SS3/4, 
Eubacterium rectale, Faecalibacterium prausnitzii, Roseburia intestinalis 
and Roseburia inulinivorans etc.) and an increase in variable opportunistic 
pathogens, such as an increase in other microbial functions revealing 
sulphate reduction and oxidative stress resistance [65]. Another large-scale 
Swedish study also showed decrease in butyrate-producing bacteria like 
Roseburia and Eubacterium eligens in female type 2 diabetic patients.

Phylum Class Order Family Genus Species
Firmicutes↓ Bacilli↑ Lactobacilales Lactobacillace↑ Lactobacillus ↑ L. gasseri ↑

L. plantarum ↑
L. reuteri ↑

Aerococcaceae Abiotrophia ↑ 
Streptococcaceae Streptococcus ↓ S. mutans ↑
Enterococcaceae Enterococcus E. rectale ↓

Clostridia↓ Clostridiale↑ Clostridiaceae Clostridium ↓ *Clostridiales ss3/4 ↓ ↑
C. coccoides ↓
C. hathewayi↑
C. ramosum↑
C. symbiosu↑
C. clostridioforme ↑

Sporobacter ↑ 
Subdoligranulum ↑ 
Peptostreptococcus ↑
Eubacterium ↑ *E. rectale ↓

*E. eligens ↓
Ruminococcaceae Ruminococcus ↑ 

Faecalibacterium *F. prausnitzi ↓
Lachnospiraceae *Roseburia *R. intestinales ↓

*R. inulinivoran ↓
*Roseburia ↓

Dorea ↑
Negativicutes Salenomonadales Veillonellaceae Megamon ↓

Actinobacteria Coriobacteriaia Coriobacteriales Coriobacteriacea ↓ Coriobacterium Atopobium ↓
Collinsella ↑ 

Eggerthellales Eggerthellaceae Eggerthella E. lenta ↑
Verrucomicrobia Verrucomicrobiae↓ Verrucomicrobiales Verrucomicrobiaceae Akkermansia A. muciniphilia ↓
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides ↓ B. intestinalis ↓
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Second study in China revealed a decreased bacterium of butyrate-
producing F. Prausnitzii in prediabetic patients than those showing normal 
glucose tolerance [66]. As SCFAs, butyrate is a strong energy source 
for intestinal mucosa and has powerful effects on various gut mucosal 
functions, working the colonic defense barrier and suppressing oxidative 
stress [67]. Butyrate was known to enhance the intestinal barrier by 
regulating the assembly of Tight Junctions (TJs) through the activation 
of AMP Protein Kinase (AMPK) as well [68]. Decreased Roseburia and 
Eubacterium have been noted in patients with symptomatic atherosclerosis 
compared with healthy subjects, working as stenotic atherosclerotic plaques 
in the area of carotid artery with cerebrovascular events [69]. The counts 
of the Clostridium coccoides group, Atopobium cluster and Prevotella were 
decreased, while total Lactobacillus were increased in feces of Japanese 
type 2 diabetic patients than in those of control subjects [70]. 

Previous reports have revealed a decline in Akkermansia muciniphila 
(A. muciniphila) in patients with obesity and diabetes [70]. Zhang et al. 
reported that the amount of A. muciniphila is relatively low, showing the 
potential to affect host metabolism deeply [66]. A. muciniphila belongs 
to the Verrucomicrobia phylum and it colonizes the mucus layer in the 
gastrointestinal tract, representing 1% to 4% of the fecal microbiota. It 
stimulates mucosal microbial networks and it improves intestinal barrier 
function, providing crucial host immunological responses [71]. Zhang et 
al. further considered that the pasteurized A. muciniphila appeared to be 
more effective than the live A. muciniphila in HFD-Streptozotocin treated 
animals [72]. This mucin-degrading bacterium was known to reverse 
high-fat diet-induced metabolic disturbance: fat-mass gain, metabolic 
endotoxemia, adipose tissue inflammatory change and insulin resistance 
as well [73]. A. muciniphila also increases the intestinal contents of 
endocannabinoids controlling the inflammatory state, gut barrier as well as 
gut peptide secretion [73]. It has been observed that A. muciniphila can 
improve glucose metabolism by mediating the negative effects of IFNγ 
on the host [74]. A. muciniphila exerts a key role in the maintenance of 
intestinal health and in metabolic modulation [71]. Bu et al. demonstrated 
that A. muciniphila plays a key role in protecting the expression of tight 
junction protein as well as intestinal barrier [75]. Overweight and fatty 
adult patients with increased gene richness and elevated A. muciniphila 
abundance showed the healthiest metabolic conditions, especially in fasting 
plasma glucose and triglyceride levels as well as body fat distribution. 
Subjects with elevated baseline A. muciniphila content showed greater 
improvement in insulin sensitivity markers and other clinical parameters on 
calorie restriction for 6-weeks [76]. Many studies further have revealed that 
F. prausnitzii abundance is decreased in different intestinal disturbances
including diabetes type 2 [65,66,77].

In 2015, Lambeth et al. investigated the characteristics of the gut 
microbiota in prediabetes and type 2 diabetes, compared with non-diabetic 
subjects [78]. Collinsella and an unknown genus belonging to family 
Enterobacteriaceae were increased in patients with type 2 diabetes. The 
increase in Collinsella in type 2 diabetes, noted in the study by Zhang et 
al. as well has been related to symptomatic atherosclerosis in the study 
by Karlsson et al. [66,69]. Sato et al. recognized that the fecal levels of 
total organic acids, acetate and propionate were lower and that the levels 
of fecal total organic acids were closely related to carbohydrate intake 
and negatively associated with the uptakes of total fat and saturated fatty 

acids in patients with type 2 diabetes [70]. Organic acids in feces augment 
elimination of Escherichia coli O-157 [79]. SCFAs is known to stimulate 
the release of gut hormones like Glucagon Like Peptide-1 (GLP-1) and 
Peptide YY (PYY) from intestinal L-cells [80,81]. Conversely, the low fecal 
concentrations of organic acids may be harmful by inducing disturbances 
of glycemic control through the reduction of postprandial incretin secretion 
and the increased susceptibility to infection in type 2 diabetic patients [70]. 

Extracellular Vesicles (EVs), lipid bilayer structures secreted from 
the gut microbiome, have recently come into the spotlight because gut 
microbe derived EVs influence glucose metabolism by enhancing insulin 
resistance. Nah et al. investigated the co-occurrence of fecal microbes and 
microbe derived EVs across serum and urine in human subjects, revealing 
the dynamics and stability of gut derived EVs [82]. The co-occurrence of 
microbes was compared between patients with Type 2 Diabetes Mellitus 
(T2DM) and healthy subjects. As a result, higher correlations between stool, 
serum and urine microbiomes in patients with T2DM compared to healthy 
subjects indicating the dysfunction of intestinal permeability in T2DM.

Recently there have been several trials of Fecal Microbiota 
Transplantation (FMT) in fatty patients. FMT from a lean donor in obese 
metabolically uncompromised patients by oral capsules was found to be 
safe, well tolerated and led to a sustained microbiome and bile acid profiles 
similar to that of a lean individual at week 12. Although Allegretti et al. did 
not find a meaningful change in intestinal hormone Glucagon-Like Peptide 
1 (GLP1), they did notice implantation of 9 OTUs in the butyrate-producing 
and bile-hydrolyzing genus Faecalibacterium which may lead to a decrease 
in primary bile acids [83]. This reduction in taurocholate may represent a 
restoration of microbiome Bile Salt Hydrolase (BSH) functionality by FMT.

Gaike et al. reported that the genera Akkermansia and Blautia 
decreased significantly in treatment-naive diabetics and were restored in 
patients with type 2 DM on antidiabetic care [84]. Comparative studies 
on the microbial community in patients of different diabetic states are still 
lacking. Understanding the transition of microbiome and its relation to 
serum biomarkers in DM patients with various disease states may open 
new therapeutic approaches for T2DM. Ding et al. considered in his recent 
review that the gut microbiota is closely associated with the regulation of 
the circadian clock in the development of type 2 diabetes, which provides 
potential for gut microbiota-directed therapies to ameliorate the effects of 
circadian disruptions linked to the occurrence and development of type 2 
diabetes [85]. 

Several studies have shown a strong correlation between Periodontal 
Disease (PD), especially in the presence of Porphyromonas gingivalis (Pg) 
oral infection and systemic disease like type 2 DM [86].The gut microbiota 
works for the control of energy homeostasis partly through fermentation of 
dietary fibers producing Short-Chain Fatty Acids (SCFAs), promoting the 
secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) through binding 
to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells [87]. A 
better understanding of the mechanisms for the regulation of L-cell functions 
is important to identify new treatment targets to increase the incretin effect 
through regulation of endogenous synthesis and secretion of GLP-1 [86]. 

Oral infection by Periodontopathogenic bacteria (Pg) affects gut 
microbiome dysbiosis and joint destruction via increased Citrullinated 

B. caccae ↑
Prevotellaceae Prevotella ↑ 

Proteobacteria β-proteobacteria↑
γ-proteobacteria Pasteurellales Pasteurellaceae Haemophilus ↓ 

Enterobacteriales Enterobacteriaceae Escherichia E. Coli ↑
Unknown Genus ↑

Note: “↑” means increase in bacteria in diabetic patients vs. normal subjects, “↓” means decrease in bacteria in patients vs. normal subjects, superior 
numbers are related reference numbers. Butyrate-producing bacteria are indicated asterisk (*).

Table 1. Alterations in intestinal microbiome on type 2 diabetic patients.
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Protein (CP) generation in an experimental arthritis model mouse [86]. 
These authors concluded that Pg administration in SKG mice as the 
following: 

(1) Continued Pg inoculation results in the alterations of gut microbiota.

(2) Dysbiosis of gut microbiota induces inflammation in intestinal
tissues.

(3) Increased CP in the intestine enhances systemic Anti-Citrullinated
Protein/Peptide Antibody (ACPA) production [86]. 

Sasaki et al. also emphasized that maintaining excellent oral health is 
important for systemic health including diabetes mellitus [88].

Although recent studies have indicated that gut microbiome dysbiosis 
was associated with the onset of T2DM, information on the role of blood 
microbiome in T2DM development is scarce [89]. The mean diversity of 
the blood microbiome was not different between T2DM cases and non‐
T2DM controls. At genus level, the Aquabacterium, Xanthomonas and 
Pseudonocardia were presented with lower abundance, while Actinotalea, 
Alishewanella, Microbacterium sediminis and Pseudoclavibacter were 
presented with higher abundance among T2DM cases compared to those 
in non‐T2DM controls. Participants carried the genus Bacteroides in blood 
were significantly associated with a decreased risk for T2DM development, 
with 74% vs. 88%. However, participants carried the genus Microbacterium 
sediminis have an increased risk for T2DMs [89].

Intestinal Permeability

The intestinal barrier protects the entry of pathogenic microorganisms 
and toxic luminal substances and regulates the absorption of nutrients, 
electrolytes and water from the intestinal lumen into the circulation [90]. 
These functions are kept by a complex multilayer system by a mucus layer 
and epithelial monolayer cells interconnected by TJs. An intact intestinal 
barrier inhibits the permeation of antigens, pathogens, endotoxins and 
other pro-inflammatory substances into the human body, whereas intestinal 
barrier disfunction allows their entry, which might trigger local and systemic 
inflammation and disease [91]. An anomalous or imbalanced gut microbiota 
possibly favors an increased intestinal permeability, predisposing to portal 
translocation of microorganisms, their products and cell wall components 
[92]. Assessment of gut barrier function in humans is currently possible 
by using gut permeability assays and by the assessment of biomarkers 
of epithelial integrity including soluble adhesion molecules, or bacterial 
markers like endotoxin. 

Patients with NAFLD were showed to increase gut permeability 
caused by disruption of the intercellular TJs characterized by decreased 
TJ protein ZO-1 expression, which may become the underlying mechanism 
of translocations of bacteria and their products [22]. Intestinal permeability 
is augmented in children with NAFLD as well and expresses the grade 
of steatohepatitis [24]. In 2014, Horton et al. showed that intestinal 
permeability estimated with Cr-EDTA urinary recovery was augmented 
in patients with type 2 DM and that it was related to increased values of 
systemic inflammatory markers representing as high-sensitivity C-reactive 
protein, IL-6 and TNF-α [93]. Zhang et al. reported that serum zonulin 
levels, useful markers of intestinal permeability, was elevated in newly 
diagnosed Chinese patients with Type 2 DM and the zonulin level was 
related to dyslipidemia, inflammation and insulin resistance [94]. Blood 
zonulin level was found to be also positively correlated with body mass index 
(BMI), fasting insulin, triglycerides and IL-6 levels, while it was negatively 
related to insulin sensitivity in Caucasian male patients [95]. Genetically 
obese ob/ob and db/db mice revealed increased intestinal permeability, 
deeply modified distribution of occludin and ZO-1 in the intestinal mucosa 
and elevated circulating levels of inflammatory cytokines and endotoxin in 
the portal blood compared with lean control mice [96]. In mice fed high-

fat diet, bacterial products together with complete living bacteria can be 
translocated from the intestinal lumen into adipose tissues [97]. 

Gut bacteria-epithelial cell interactions have been suggested as 
a key contributor of epithelial permeability in several segments of the 
gastrointestinal tract. In fact, several studies support the notion that 
bacteria can regulate TJ expression and assembly and thus regulate trans-
epithelial permeability [98]. Comprehensive knowledge about the role of the 
gut microbiota on intestinal barrier function from a highly relevant model, 
i.e., epithelial organoids, will be crucial in developing strategies to resolve
epithelial barrier dysfunctions in several non-infectious chronic diseases
[98].

Metabolic Endotoxemia

Lipopolysaccharide (LPS), often named as endotoxin, represents the 
major constituent of the outer cell membrane of gram-negative bacteria 
and crosses the gut mucosal membrane to enter the blood and directly 
enhances inflammatory pathways. It can reach the deranged paracellular 
TJ or can reach the enterocytes together with damaging lipoproteins, 
because it has a strong affinity to chylomicrons [99]. 

Both animal experiments and human studies have revealed that a 
high-fat diet is able to modulate the gut microbiota and increase blood 
levels of endotoxin [63]. Morbidly fat patients with the highest postprandial 
hypertriglyceridemia revealed an increase in the endotoxin levels in serum 
and the chylomicron fraction after eating fatty diet [100]. Although baseline 
endotoxin level was elevated in patients with type 2 DM and Impaired 
Glucose Tolerance (IGT) compared with nonobese control subjects, 
ingestion of a high-fat meal further induced a rise in endotoxin levels in type 
2 diabetic, IGT and obese patients [101]. This indicates that a continual 
snacking enhances their pro-inflammatory conditions in type 2 diabetic and 
IGT subjects attributable to the constant exposure to circulating endotoxin 
[101]. 

Besides paracellular leakage of endotoxin across the intestinal 
epithelium, there exits more physiological route of endotoxin entry. 
Namely, the internalization of gram-negative bacteria through TLR4 and 
myeloid differentiation protein-2 (MD-2)-dependent mechanism [101-104]. 
Endotoxin is more likely transported to Golgi compartment of the enterocyte, 
where newly assembled chylomicrons are destined to be located prior to 
basolateral secretion [105-107]. Chylomicrons are likely to bind endotoxin 
easily and stimulate endotoxin uptake by enterocyte [107-109]. In fact, the 
morbidly obese patients with the elevated postprandial hypertriglyceridemia 
revealed a significant increase in endotoxin levels in the blood and the 
chylomicron fraction after the fat overload [100]. Although chylomicrons 
inhibit endotoxin toxicity and cell activation, excess endotoxin attributable 
to paracellular leakage may strongly enhance inflammatory states in type 
2 diabetics [108]. In accordance with these findings, a large cohort study 
revealed that endotoxemia was tightly associated with cardiometabolic 
disorders [110]. 

The lack of endotoxin tolerance in macrophages of type 2 diabetic 
patients possibly be explained by the fact that low-dose subclinical 
endotoxemia induces low-grade inflammation via IRAK-1 and Tollip and 
fails to activate the classical Nuclear Factor-κB (NFκB) pathway causing 
an anti-inflammatory resolution [111]. Moreover, as described below, 
obesity may possibly reduce the production of adiponectin [41], which is 
known to promote endotoxin tolerance [112,113]. Kupffer cells are hepatic 
macrophages expressing high levels of CD 163. Gut-microbiota alterations 
and bacterial translocation may attribute to hepatic inflammation. 
Lipopolysaccharide stimulates toll-like receptor 4 leading to an activation of 
Kupffer cells which express the surface receptor, CD 163 [114].

Figure 1 summarizes the relationships of gut dysbiosis, intestinal 
hyperpermeability and endotoxemia in the progression of metabolic 
syndrome and type 2 diabetes. 
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Figure 1. Gut dysbiosis, intestinal hyperpermeability and endotoxemia in the grade of metabolic syndrome and type 2 diabetes. Disturbance of Intestinal 
epithelial barrier and increased permeability together with gut dysbiosis may lead to the translocation of bacterial fragments and endotoxemia, which eventually 
enhances low-grade inflammation in various tissues and insulin resistance on type 2 diabetes. Inflammatory changes in the adipose tissue of fatty patients show 
pro-inflammatory cytokinemia. Toll-like receptors induce inflammatory changes and insulin resistance, resulting in an impairment of insulin signaling and β-cell 
dysfunction. Inflammatory changes in the arterial vessels and liver promotes ischemic heart disease and chronic liver disease, respectively.

Low-Grade Inflammatory Changes 

Increased intestinal permeability is in this way thought to enhance 
microbial translocation, metabolic endotoxemia and low-grade inflammatory 
changes in obese patients with NASH and type 2 diabetes [115]. Low-
grade chronic inflammation prevailing in these patients was presumably 
triggered by activation of TLR4 and TLR2. TLR4 is activated by endotoxin 
and also by fatty acids, which results in activation of NF-κB and release 
of pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α and Monocyte 
Chemotactic Protein-1 (MCP-1) [116]. 

Human adipose tissue is known as an active site for innate immune 
response, through activation of TLRs and downstream NF-κB signaling 
[117]. It also contains many macrophages and, in this way, may function as a 
first line of defense against superficial various wounds. To deal with evident 
positive energy balance, the adipocytes in obese patients are destined 
to develop chronic low-grade inflammation, which provokes secondary 
effects on other organs including muscle and liver through the inflammatory 
adipocytokine [117]. The adipose tissue in obese and NASH patients may 
be enlarged with both hyperplasia and hypertrophy, together with increased 
macrophage infiltration [118], where adipocytes and recruited macrophages 
trigger the inflammatory responses via overexpression of TLR2, TLR4 and 
MyD88 [117,119]. In contrast, anti-diabetic, anti-inflammatory and anti-
atherogenic adiponectin expressions are decreased in the adipose tissue 
of fatty subjects [120]. Their productions are decreased in subjects with 
visceral fat accumulation and their plasma levels are reversely correlated 
with visceral adiposity [41]. Obesity-related immune cell infiltration, 
inflammation and increased oxidative stress enhance metabolic impairments 
in the insulin-sensitive tissues and as a result, insulin resistance, organ 
failure and premature aging occur [121]. Hyperglycemia and the following 
inflammation are the causes of micro- and macro-angiopathies in the 
circulatory system in diabetic patients. They also promote the gut dysbiosis, 
increased intestinal permeability and fatty liver disease [121]. 

Leptin is an adipokine which works to decrees food intake and to 
increase energy expenditure [122]. Although whole leptin levels are 
increased in obese patients, its action is not increased due to the condition 
named leptin resistance [123]. Rajala et al. described that pair-fed leptin 
receptor-deficient (db/db) mice showed marked alterations in expression 
of various antimicrobial peptides and a shift in fecal microbiota toward a 
reduction in the Bacteroidetes to Firmicutes ratio [124]. These imply that the 

leptin receptor signaling plays a role in modulating microbiota composition, 
although it is not still clear whether leptin signaling adjust antimicrobial 
peptides regulating the microbiota, or does leptin signaling directly affect 
the microbiota [125]. It is reasonable that decreased leptin signaling is 
likely to enhance SIBO or gut dysbiosis along with unhealthy dietary habit 
in obese diabetic patients. Clinical data are still lacking to demonstrate the 
issue at present, but this is worth investigating. 

Low-grade inflammatory changes in metabolic syndrome enhances 
NAFLD in the liver. It enhances a spectrum of pathological changes ranging 
from the simple fatty liver (NAFL) through NASH to fibrosis and eventually 
cirrhosis and final hepatocellular carcinoma [44]. Patients with type 2 DM 
have in this way a twofold to threefold higher risk of dying due to chronic 
advanced liver diseases associated with a non-virus and non-alcohol-
related etiology, largely attributable to NAFLD and NASH [126]. Patients with 
NASH show endotoxemia and overexpression of TLR4 signaling in the liver 
associated with pro-inflammatory cytokine release together with systemic 
inflammation [127,128]. Plasma endotoxin levels and hepatic TLR4 mRNA 
expression were found to be higher in NASH patients compared with NAFL 
patients [129]. SIBO often observed in NASH patients is also associated 
with enhanced hepatic expression of TLR4 and release of IL-8 [46]. 

Type 2 diabetic patients also show increased TLR2, TLR4 mRNA and 
proteins in the Peripheral Blood Mononuclear Cells (PBMCs) compared with 
control subjects [130]. The increased TLR expressions were closely related 
with Body Mass Index (BMI), Homeostasis Model Assessment-Insulin 
Resistance (HOMA-IR), glucose, HbA1c and blood free fatty acid levels 
[130]. Another study revealed that increased TLR4 and TLR2 expressions 
in PBMCs were correlated with TNF-α and IL-6 expressions in PBMCs and 
fasting blood glucose and HbA1c levels [119]. The increased circulatory 
ZO-1 and endotoxin levels were correlated to inflammatory markers and 
poor glycemic/lipid control [131]. 

Diabetic complications are related partly with the release of endogenous 
TLR ligands leading to activation of TLRs signaling [132]. TLR1, 2, 4 and 
6 mRNA expressions were augmented evidently in wounds of patients with 
type 2 DM compared with wounds in non-diabetic subjects [133]. Although 
several experiments have told that other pattern recognition receptors 
NOD-1 and TLR9 are related to low-grade inflammation and insulin 
resistance, so far no study has demonstrated the increases in their ligands, 
peptidoglycan moieties and bacteria-derived Cytosine Phosphate Guanine 
(CpG)-containing DNA, respectively, in fatty patients or subjects with type 
2 DM [107]. Together with endotoxin, glucose solution itself is known to 
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activate TLR4 expression and to enhance TNF-α and IL-6 secretion in 
the abdominal subcutaneous adipose tissue and isolated subcutaneous 
adipocytes [134]. It is demonstrated to induce similar TLRs expression and 
cytokine secretion of PBMC [135]. 

Insulin Resistance and β-cell Dysfunc-
tion 

Insulin as a chief modulator of glucose homeostasis initiates its 
physiological effects through activation of the insulin receptor. After 
tyrosine autophosphorylation, Insulin Receptor Substrate (IRS)-1 and 
IRS-2 bind and activate Phosphatidylinositol 3-Kinase (PI3-K), increasing 
serine phosphorylation of Akt, which results in glucose transport in the 
muscle and adipose tissue, glycogen synthesis in the liver and muscle and 
lipogenesis in the adipose tissue [107]. Glucose, lipids and endotoxin are 
chief three factors leading low-grade inflammation and insulin resistance 
[117]. Lipotoxicity with elevated circulating free fatty acids are related to 
increased insulin resistance [117]. TLRs, especially TLR4 and TLR2, 
provoke insulin resistance, which is important in the progression of obesity 
and metabolic syndrome [116]. Activation of inflammatory pathways due 
to TLRs enhancement results in a disturbance of the insulin signaling, 
including decreased phosphorylation of the insulin receptor, IRS and Akt and 
increased inhibitory serine phosphorylation of IRS-1 [107]. Enhancement of 
TLR4 by endotoxin in preadipocytes augments the expression of TNF-β and 
IL-6, which impair the insulin signaling in adipocytes [136]. Endotoxin can 
promote the expression of iNOS and thus interfere with the insulin signaling 
[137]. Excessive production of nitric oxide augments insulin resistance by 
hampering Lipoprotein Lipase (LPL) activity and increasing lipolysis and 
circulating fatty acids [107,138]. 

Low-grade inflammation and innate immune system activation further 
lead to β-cell failure [132]. TLR4 expression is elevated in fat, muscle and 
pancreatic islet cells, including β-cells and resident macrophages in insulin-
resistant mice [139]. Expression of TLR4 in db/db mouse islets increased 
in parallel with hyperglycemia, which was associated with increased 
expression and secretion of TNF-α, IL-1 and IL-6 [139]. Endotoxin impairs 
insulin gene expression (PDX-1 and MafA mRNA levels) of human and rat 
islets via TLR4 and NF-κB signaling [140]. It is important that the effects of 
endotoxin on the insulin gene in human islets are observed at concentrations 
similar to the circulating levels during endotoxemia suggesting that direct 
repression of the insulin gene may contribute to the metabolic disturbances 
associated with alterations of the gut microbiota [140]. 

On the other side, TLR4 or TLR2 deletion improved diet-induced insulin 
resistance and inflammation of adipose tissue in mice [132]. Diabetic islets 
have 40% fewer TLR4 positive β-cells, but twice the number of TLR4 
positive macrophages as compared to healthy islets [141]. The TLR4 
responses elevated in the diabetic mouse islets, which is mainly mediated 
by newly recruited macrophages [141]. The TLR4 positive macrophages 
induce apoptosis of β-cells and induce β-cell dysfunction measured as 
reduced glucose stimulated insulin secretion in mouse islets [141].

Possible Relation of Pharmacotherapy to 
Gut Microbiota 

Metformin 
As a biguanide derivate, metformin has been used widely in the 

treatment of type 2 diabetes for over 50 years. It gives the major clinical 
advantage of not inducing hypoglycemia or weight gain and ameliorates 
hyperglycemia showing remarkable cardiovascular safety [142]. The main 
effect of this drug is to decrease hepatic glucose production through a 
transient inhibition of the mitochondrial respiratory-chain complex 1 [143]. 
The resulting decrease in hepatic energy status activates the AMPK, a 
cellular metabolic sensor, providing a generally accepted mechanism 
for metformin effect on hepatic gluconeogenesis [143]. Metformin has 

pleiotropic effects beyond glucose reduction, including improvement of 
lipid profiles and lowering microvascular and macrovascular complications 
associated with type 2 diabetes [144]. These effects have not been totally 
due to AMPK activation, because intravenous metformin is less effective 
than oral medication, suggesting important gut pharmacology of the drug 
[144]. Napolitano et al. found that metformin withdrawal was related to a 
reduction of GLP-1 and increase in serum bile acids, especially cholic acid 
and its conjugates [144]. Microbiota abundance of the phylum Firmicutes 
was positively correlated with changes in cholic acid and its conjugates. 
On the other side, Bacteroidetes abundance was negatively correlated with 
them [144]. This means that metformin is considered to enhance GLP-1 
secretion and suppress serum bile acids levels and fecal Firmicutes/
Bacteroidetes ratio. Clarembeau et al. performed clinically validate a stable-
isotope-dilution LC/MS/MS method for the quantitative analysis of numerous 
primary and secondary BAs and showed that BAs whose circulating levels 
are associated with T2DM include numerous 12α-hydroxyl BAs (taurocholic 
acid, taurodeoxycholic acid, glycodeoxycholic acid, deoxycholic acid and 
3-ketodeoxycholic acid), while taurohyodeoxycholic acid was negatively
associated with diabetes [145].

Sun et al. found that metformin works through lowering levels of 
Bacteroides fragilis in the gut, resulting in a decrease in the enzyme bile salt 
hydrolase and a subsequent increase of hydrophilic Glycoursodeoxycholic 
Acid (GUDCA) [146]. This may inhibit intestinal FXR and increase the level 
of liver BAs, leading to improvement of metabolic dysfunction including 
hyperglycemia [147].

Interestingly, metformin is further known to stimulate mucin formation 
by the microbiome Akkermansia muciniphila. Metformin is known to induce 
intestinal mucin 2 and mucin 5 expressions and increases Akkermansia in 
a culture system [148]. Metformin and Akkermansia administration were 
also associated with the downregulation of elevated IL-1β and IL-6 mRNA 
expression in visceral adipose tissue of mice fed a high-fat diet, which 
suggests that metformin like Akkermansia improves the metabolic profile 
of diet-induced obesity by ameliorating low-grade tissue inflammation [149]. 
Oral administration of metformin to mice with LPS-induced endotoxemia or 
ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and 
increased Activating Transcription Factor-3 (ATF-3) expression in spleen 
and lungs, which further supports that metformin exhibits anti-inflammatory 
action in macrophages [150]. Moreover, high-dose metformin provides 
anti-inflammatory effects through protecting against oxidative stress and 
extending the lifespan of middle-aged mice by approximately 6% [151]. 

Atherosclerosis-associated cardiovascular disease is a chief 
complication of type 2 DM, where inflammation plays a pivotal role [152]. 
Metformin has been regarded as a first selected drug for most patients, 
because it reduces cardiovascular morbidity and mortality [153]. Further 
human study is needed concerning its pharmacological effects on gut 
dysbiosis and inflammatory parameters for cardiovascular advantage. 

DPP-4 inhibitors 
The incretin hormones such as Glucose-dependent Insulinotropic 

Polypeptide (GIP) and GLP-1 are secreted from enteroendocrine cells in the 
gut and adjust physiological and homeostatic functions related to glucose 
control, metabolism and dietary intake [154]. Native GLP-1 has a half-life 
of less than 2 min as a result of analysis by Dipeptydil-Peptidase-4 (DPP-
4) mainly secreted by endothelial cells and rapid renal clearance of both
the intact and degraded GLP-1 molecules [155,156]. DPP-4 inhibitors are
recently developed anti-diabetic drugs that can improve glucose metabolism 
by elevating the concentration and duration of active GLP-1[157,158].
IDPP-4 inhibitors in this way stimulate glucose-dependent insulin secretion
and decrease glucagon secretion [7].

DPP-4 thus acts as a multifunctional regulatory protease for cytokines, 
chemokines and neuropeptides involved in inflammation, immunity and 
vascular function [159]. Anti-inflammatory effects and anti-diabetes property 
have opened a new possibility for the use of DPP-4 inhibitors. Makdissi 
et al. described that one of DPP-4 inhibitors sitagliptin acts as a potent 
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anti-inflammatory effect on patients with type 2 DM [160]. After 12 weeks 
of sitagliptin intake, the mRNA expressions of TLR4, TLR2, TNF-α, JNK-1, 
IKKβ and CCR-2 in PBMC of patients with type 2 DM decrease significantly 
compared with the base-line levels. In vitro examination in human THP-
1 macrophages, sitagliptin induced a significant reduction in pyrin domain 
containing 3 (NLRP3) inflammasome, TLR4 and IL-1β expression [161]. In 
apolipoprotein E-deficient diabetic mice fed high-fat diet, another DPP-4 
inhibitor alogliptin attenuated diabetes-augmented IL-6 and IL-1β expression 
in atherosclerotic plaques and inhibited TLR4-enhanced upregulation of IL-
6, IL-1β and other pro-inflammatory cytokines by mononuclear cells [152]. 
Another DPP-4 inhibitor linagliptin was showed to induce down-regulate the 
pro-inflammatory marker cyclooxygenase-2 and Macrophage Inflammatory 
Protein-2 (MIP-2) expression in healing wounds from ob/ob mice [162]. 
Concerning the effect against NASH, 5-week intake of sitagliptin effectively 
improved methionine/choline-deficient diet-induced steatohepatitis, where it 
decreased the expression of Cytochrome P450 2E1 (CYP2E1), 4-Hydroxy-
2-Nonenal (4NHE), fibronectin and α-Smooth Muscle Actin (α-SMA) in the
liver and decreased the inflammation of adipose tissue [163]. Recently
Somm et al. reported a direct beneficial hepatic action of the GLP-1RA
liraglutide, with potential translational relevance for T2D patients affected
by NASH [164].

We have presented that sitagliptin markedly supressed liver fibrosis in 
rats via dectease in activated Hepatic Stellate Cells (HSCs) [165]. These 
suppressive effects were confirmed to associate with dephosphorylation of 
ERK1/2, p38 and Smad2/3 in the HSCs. Although direct anti-inflammatory 
actions of DPP-4 inhibitors have been reported in in vitro studies using 
aorta tissue [158], mononuclear cells [152], macrophages [166], endothelial 
cells and adipocytes [167,168], their relation to gut dysbiosis, intestinal 
permeability or metabolic endotoxemia have not been investigated 
yet. Mashitani et al. presented that alogliptin for 12 months significantly 
decreased serum ferritin levels in type 2 diabetics with relatively low HbA1c 
levels [169]. Although the results are now meaningful in the point that DPP4-
inhibitors may be beneficial to prevent the disease progression in patients 
with NAFLD and type 2 diabetes, the mechanism of decrease in ferritin was 
not considered in discussion. The effect of DPP4-inhibitors on metabolic 
endotoxemia may deserve further investigation, because both iron and 
endotoxin are taken up by Kupffer cells and close correlation has been 
reported between plasma endotoxin and serum ferritin levels in patients 
with advanced liver disease [170-172]. 

SGLT2 inhibitors 
Two main sodium-glucose cotransporters, SGLT1 and SGLT2 have 

been recently introduced. SGLT1 enables the small intestine to absorb 
glucose and contributes to the reabsorption of glucose filtered by the 
kidney. Another SLGT, SGLT2 is responsible for reabsorption of most of the 
glucose filtered by the kidney [173]. Variable SGLT2 inhibitors have been 
accepted as a new class of treatment for Type 2 diabetic patients [174]. 
By decreasing renal glucose absorption, these agents are aimed to target 
hyperglycemia independent of insulin secretion or insulin sensitivity [175]. 
Based on this unique mechanism of action [175], they are also expected as 
a safe and effective drug with other agents, including insulin and incretin-
based therapies [175]. 

By the way, there are wide varieties in their selectivity for SGLT2 
compared with SGLT1: canagliflozin 160-fold, ipragliflozin 570-fold, 
dapagliflozin 1,200-fold, luseogliflozin 1,770-fold and empagliflozin 2,700-
fold [176]. Although empagliflozin is extremely selective, it is associated 
with lower rates of all-cause and cardiovascular death and lower risk of 
hospitalization for heart failure [177]. Heart failure–associated endpoints 
seemed to account for most of the observed benefits in this study [7]. The 
marked cardioprotective effect of empagliflozin may not be explained by 
slight decrease of HbA1c level observed in the study. In experimental 
studies, intake of empagliflozin not only improved hyperglycemia but 
also stabilized endothelial function of aortic rings and reduced oxidative 
stress in aortic vessels of diabetic rats induced by streptozotocin [178]. 
Another study reported that empagliflozin significantly improved markers 
of oxidative stress 8-hydroxydeoxyguanosine (8-OHdG) in the kidney of 

streptozotocin-induced diabetic rats [179]. It inhibited inflammatory and 
fibrotic gene expression such as MCP-1, intercellular adhesion molecule-1 
(ICAM-1). Plasminogen activator ibhibitor-1(PAI-1) and Transforming 
Growth Factor-𝜷 (TGF-𝜷) in the diabetic kidney. 

Empagliflozin significantly improved cardiovascular outcomes and 
shows class III–IV symptoms only 10% in diabetic patients. Empagliflozin 
treatment of type 2 diabetic patients shows no significant effect on 
hemodynamic parameters after 1 or 3 days and also after 3 months. It 
leads to rapid and sustained significant improvement of diastolic function 
[180]. Renal SGLT1 gene expression was suppressed in the study [179]. 
Although the authors did not analyze SGLT1 action in the intestine, there 
was a possibility that empagliflozin does inhibit it, thereby decreasing the 
rate of intestinal glucose absorption. 

SGLT1 is expressed in the small intestine and transports glucose and 
galactose across the apical membrane in a process driven by a sodium 
gradient created by Na+/K+-ATPase [174]. Elevated mRNA and protein 
levels for SGLT1 have been reported in the intestine of obese subjects and 
type 2 DM [181,182]. Intestinal SGLT1 inhibition suppress and delays the 
glucose excursion following carbohydrate ingestion and augments GLP-1 
and peptide YY secretion [174]. The latter is likely attributed to increased 
glucose exposure of the colonic microbiome and formation of metabolites, 
such as L cell secretagogues [174]. An increase in colonic microbial 
production of SCFAs augments barrier function of the colonic epithelium 
and possibly inhibits metabolic endotoxemia. Taken together, the above 
cardioprotective effect of empagliflozin might be explained by its anti-
inflammatory actions not only in the kidney but also in the intestine. 

Although the results of succeeding trials of dual SGLT1/2 inhibitors 
should be carefully evaluated, the possible effects of SGLT2 inhibitors on 
intestine, gut dysbiosis and metabolic endotoxemia may deserve further 
investigation. 

Other promising drugs
Finally, Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) pose 

promising anti-inflammatory, anti-obesogenic and extensive cardiovascular 
and metabolic benefits and pulmonary protective effects, as well as 
beneficial impact on gut microbiome composition. It can also preserve 
healthy gut microbiota (prevent microbiome dysbiosis). Hence, GLP-1RAs 
turns out to be potential candidates for the treatment of patients, also 
affected by COVID-19 infection with type 2 diabetes mellitus [183].

Dietary Treatment
Dietary treatment based on latest knowledge on the food-microbiome 

interaction may improve the effects of diabetic medications. Hiel et al. 
showed that nutritional intervention targets the gut microbiota – even if 
they will never solve the problem of obesity and diabetes alone-must are 
considered in the medical follow-up of obese patients [184]. Changes in 
fecal microbiota were most pronounced after six weeks of low-calorie 
formula diet, but they were reverted partially until the end of this study. 
The gut microbiota phylogenetic diversity increased persistently, however. 
The abundance of Collinsella, which has previously been associated with 
atherosclerosis, decreased significantly during this weight loss program 
[185].

In fact, the Westernization of the Asian diet is known to be responsible 
for the increase in type 2 diabetes in Asian countries [186]. In fact, 
sucrose intake and medium‐chain fatty acid intake, which are related to 
characteristics of Western diet [186]. Metabolites produced by the gut 
microbiota could be pathogenic or beneficial to the host. These metabolites 
might play crucial roles in host biosynthetic and metabolic networks, as 
well as various immunological and neurobiological processes. Metabolites 
are the products and intermediates of cellular metabolism [186]. There is 
a possibility that reducing sucrose intake could help prevent the onset of 
type 2 diabetes mellitus through prevention of gut dysbiosis in Japanese 
individuals [187]. Further a number of scientific studies suggesting a 
positive impact of ω-3 fatty acids and probiotics (individually and combined) 
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on low-grade inflammation is growing and increasing evidence points 
towards health-promoting effects from these supplements throughout the 
life span [188]. 

We can initiate healthy food preferences from the earliest date, thus 
optimizing the long-term public health benefits [189]. This meticulous 
dietary treatment finally suppresses the morbidity of patients with diabetes 
and related cardiovasclular and hepatic events in risky patients with type 
2 diabetes mellitus. Consumption of Mediterranean-style Diets (MD) is 
considered healthy and associated with the prevention of cardiovascular 
and metabolic diseases and many other diseases. Such beneficial effects 
of MD might be attributed to high proportion of fibers, mono- and poly-
unsaturated fatty acids, antioxidants and polyphenols [190]. It is becoming 
evident that the microbial metabolites produced by gut microbiome and 
dietary interactions plays an important role to regulate host metabolism 
and physiology. MD feeding enhances abundance of probiotics or beneficial 
bacteria like Lactobacilli, however, future studies focusing on determining 
how the increased abundance of Lactobacilli benefit host health will be 
important to conclude the mechanistic views [190]. Short Chain Fatty Acids 
(SCFA, particularly butyrate) produced by gut microbes may positively 
influence insulin sensitivity and insulin secretion, with effects that would 
prevent T2D [191]. Kesh et al. revealed that T2DM negatively contributes 
to therapeutic outcomes in pancreatic cancer and they conclude that 
enrichment of a “tumor protective” gut bacteria as well as enrichment of a 
“stem-like” population contributed to this phenomenon [192].

Li et al. indicate that IL-37 showed a protective role in the elderly type 2 
DM patients and might sensitize them to insulin therapy through suppressing 
the gut microbiota dysbiosis [193]. Our findings suggested that IL-37 may 
have clinical potential as a novel therapeutic target in the treatment of 
type 2 elderly DM patients. Phytochemicals other than caffeine appear to 
account for most beneficial properties of coffee. As in vegetables or fruits, 
polyphenols and phenolic acids represent a major portion of phytochemicals 
in coffee beans [194]. Polyphenols are plant secondary metabolites widely 
exist in plants and fruits. These substances and their diverse metabolites 
have profound influence on the diversity and complexity of the intestinal 
microflora. Various studies have been carried out to understand the 
response of the gut microbiota with polyphenol administration as well as 
to identify the key microorganisms involved. Dietary polyphenols and their 
metabolites contribute to the maintenance of energy homeostasis and gut 
health through modulation of the gut microbiome, intestinal epithelial cellular 
function and the mucosal immune system. Although the detailed mechanism 
by which polyphenols interact with the gut microecology is still not yet well 
characterized, polyphenols appear to influence energy metabolism and 
promote weight loss by restructuring the intestinal microecology [195]. The 
review by Koopen et al. also demonstrates that dietary polyphenols and 
microecology favorably interact to promote multiple physiological functions 
on human organism [196]. 

Lind et al. reported that the Swedish complementary diet contributes to 
a sustainable environment [197]. A daily supplement of inulin-type fructans 
induced a moderate, but significant increase in fecal levels of Bifidobacteria, 
total SCFA, acetic acid and propionic acid in patients with type 2 DM [198].

The close relation between the gut microbiome and diabetes has 
gradually moved step by step from the initial correlation studies, which 
proved a strong association, to exploring the causality and potential 
mechanisms. It is very clear that as science looks to the future as this 
will be a very promising frontier not only as a biomarker for diabetes, but 
also as a target for potential therapeutic treatments [199]. The treatment 
with a low‐fat diet, the blood glucose and BMI of patients with T2DM were 
effectively controlled. However, the changes in intestinal flora were complex 
[200]. The relative abundances of butyrate‐producing bacteria, including 
Anaerotruncus and Roseburia, were significantly lower in the intestinal tract 
of patients with T2DM than in healthy individuals. Although the difference 
in intestinal flora between patients with T2DM and controls was great, 
the structure of the intestinal flora between diabetic patients and healthy 
individuals gradually tended to become more similar after 6 months of 
treatment [200]. Van et al. further strongly supported that plant extracts rich 

in polyphenols has a power to improve metabolic disorders associated with 
obesity and metabolic disorders [201]. Increasing SCFA production could be 
a valuable strategy in the preventing gastro-intestinal dysfunction, obesity 
and type 2 DM [202]. Dietary fiber can significantly improve the relative 
abundance of Bifidobacterium, total SCFAs and glycated hemoglobin. 
However, dietary fiber did not appear to have a significant effect on 
fasting blood glucose, HOMA-IR, acetic acid, propionic acid, butyric acid 
and adverse events [203]. The Very Low-Calorie Ketogenic Diet (VLCKD) 
appears to be more effective than caloric/energy restriction diets for the 
treatment of several diseases, such as obesity and diabetes [204-207]. In 
the Western world, dietary therapy is impoverished of fiber. Dietary fiber 
intake associates with overall metabolic health (through key pathways that 
include insulin sensitivity) and a variety of other pathologies that include 
cardiovascular disease [208-210]. 

Conclusion 

The implications of gut microbiota can be also exemplified in other 
treatment modalities for type 2 DM. Improvement of metabolic effects of 
a probiotic VSL#3 on rats fed high-fat diet has been reported based on 
the increase in SCFA butyrate, which stimulates the release of GLP-1. 
Enrichment of gut microbiota with Lactobacillus reuteri was known to be 
increased insulin secretion in glucose-tolerant volunteers. As stated in 
various studies, gut dysbiosis is likely to play a key modulatory role on 
the disease progression of type 2 diabetes. Marked technological progress 
in the studies of gut microbiota has opened a novel area of research 
field in diabetology. However, we should be aware of its limitations and 
always try to refine the method. Studies using the direct measurement of 
microbiota function such as metagenomic, transcriptomic and metabolomic 
assays (i.e., the metabiome) are needed to determine whether changes 
in bacterial function rather than composition are related to health and 
disease. Nevertheless, we can further tune the better microbial composition 
of patients by a skillful diet therapy to get a maximum effect of each 
pharmacotherapy. Interestingly enough, some probiotics are reported to 
increase adiponectin levels and to enhance its receptor AdipoR2 gene 
expression in experimental animals. 

The progress in gut microbiology with emerging analytical technologies 
has a power to bring about a paradigm shift in the diabetes treatment of 
tomorrow. There is a great possibility that meticulous management of gut 
microbiota and intestinal functions may suppress metabolic endotoxemia 
and inflammation and finally improve the prognosis of patients with 
diabetes. By all means, lifestyle optimization is essential for all patients 
with diabetes. Dietary treatment on the basis of latest knowledge on the 
food-microbiome interaction may improve the effects of diabetic drugs. Hiel 
et al. shows that nutritional intervention targeting the gut microbiota-even 
if they will never solve the problem of obesity and diabetes alone must be 
considered in the medical follow-up of obese. Changes in fecal microbiota 
were most pronounced after six weeks of low-calorie formula diet, but 
they were reverted partially until the end of this study. The gut microbiota 
phylogenetic diversity increased persistently, however. The abundance of 
Collinsella, which has previously been associated with atherosclerosis, 
decreased significantly during this weight loss program.

In fact, the Westernization of the Asian diet is known to be responsible 
for the increase in type 2 diabetes in Asian countries. Sucrose intake and 
medium‐chain fatty acid intake, which are related to characteristics of 
Western diet sucrose intake and medium‐chain fatty acid intake, which 
are associated with characteristics of Western diet. Metabolites produced 
by the gut microbiota could be pathogenic or beneficial to the host. These 
metabolites might play crucial roles in host biosynthetic and metabolic 
networks, as well as various immunological and neurobiological processes. 
Metabolites are the products and intermediates of cellular metabolism. 
There is a possibility that reducing sucrose intake could help prevent the 
onset of type 2 diabetes mellitus through prevention of gut dysbiosis in 
Japanese individuals. Further a number of scientific studies suggesting a 
positive impact of ω-3 fatty acids and probiotics (individually and combined) 
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on low-grade inflammation is growing and increasing evidence points 
towards health-promoting effects from these supplements throughout the 
life span. 

We can initiate healthy food preferences from the earliest date, thus 
optimizing the long-term public health benefits. This meticulous dietary 
treatment finally suppresses the morbidity of diabetic patients and related 
cardiovasclular and hepatic events in risky patients with type 2 diabetes 
mellitus. Consumption of MD is considered healthy and associated 
with the prevention of cardiovascular and metabolic diseases and many 
other diseases. Such beneficial effects of MD might be attributed to high 
proportion of fibers, mono- and poly-unsaturated fatty acids, antioxidants 
and polyphenols. It is becoming evident that the microbial metabolites 
produced by gut microbiome and dietary interactions plays an important 
role to regulate host metabolism and physiology. MD feeding enhances 
abundance of probiotics or beneficial bacteria like Lactobacilli, however, 
future studies focusing on determining how the increased abundance of 
Lactobacilli benefit host health will be important to conclude the mechanistic 
views. Short Chain Fatty Acids (SCFA, particularly butyrate) produced 
by gut microbes may positively influence insulin sensitivity and insulin 
secretion, with effects that would prevent T2D. Kesh et al. revealed that T2D 
negatively contributes to therapeutic outcomes in pancreatic cancer and 
they conclude that enrichment of a “tumor protective” gut bacteria as well 
as enrichment of a “stem-like” population contributed to this phenomenon.

Li et al. indicate that IL-37 showed a protective role in the elderly type 2 
DM patients and might sensitize them to insulin therapy through suppressing 
the gut microbiota dysbiosis. Their findings suggested that IL-37 may have 
clinical potential as a novel therapeutic target in the treatment of type 2 DM 
in the elderly. Phytochemicals other than caffeine appear to account for 
most beneficial properties of coffee. As in vegetables or fruits, polyphenols 
and phenolic acids represent a major portion of phytochemicals in coffee 
beans. Polyphenols are plant secondary metabolites widely exist in plants 
and fruits. These substances and their diverse metabolites have profound 
influence on the diversity and complexity of the intestinal microflora. 
Various studies have been carried out to understand the response of the 
gut microbiota with polyphenol administration as well as to identify the 
key microorganisms involved. Dietary polyphenols and their metabolites 
contribute to the maintenance of energy homeostasis and gut health through 
modulation of the gut microbiome, intestinal epithelial cellular function and 
the mucosal immune system. The impaired immune system together with 
metabolic imbalance also increases the susceptibility of diabetic patients to 
several pathogenic agents such as the Severe Acute Respiratory Syndrome 
coronavirus (COVID-19).

Although the detailed mechanism by which polyphenols interact with 
the gut microecology is not yet well characterized, polyphenols appear to 
influence energy metabolism and promote weight loss by restructuring the 
intestinal microecology. The review by Koopen et al. also demonstrates that 
dietary polyphenols and microecology favorably interact to promote multiple 
physiological functions on human organism. 

Dietary fiber can significantly improve the relative abundance of 
Bifidobacterium, total SCFAs and glycated hemoglobin. However, dietary 
fiber did not appear to have a significant effect on fasting blood glucose, 
HOMA-IR, acetic acid, propionic acid, butyric acid and adverse events. 

Fecal Microbiota Transplantation (FMT) seems to have potential clinical 
applications in treating diabetic patients with gut dysbiosis. Correction of gut 
dysbiosis with FMT not only results in mucosal healing in the gut, but also 
has profound systemic, immunological and metabolic response. GLP-1RAs 
give to be potential candidates for the treatment of patients, also affected 
by COVID-19 infection with type 2 diabetes mellitus.
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