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Introduction
Chronic Kidney Disease (CKD) is a worldwide public health problem 

associated with high morbidity, mortality and disproportionately higher 
healthcare expenditure compared to other disease conditions [1]. CKD has been 
projected to be among leading top five causes of death worldwide attributed 
to elderly population and high prevalence of cardiovascular complications 
from diabetes [2]. CKD progression is characterized by persistent low-grade 
systemic inflammation typifies by presence of proinflammatory markers, similar 
to what obtains in other chronic inflammatory conditions such as metabolic 
syndrome, Non-Alcoholic Fatty Liver Disease (NAFLD), Cardiovascular 
Disease (CVD), malignancy and Diabetes Mellitus (DM) [3]. The inflammatory 
process is initiated by tissue injury or presence of foreign particles which 
triggers production of proinflammatory markers culminating in inflammatory 
cascade. This physiological proinflammatory process is controlled or abated by 
counter regulatory production of anti-inflammatory molecules and any residual 
and persistent low-grade inflammation is either due to failure to discontinue 
the inflammatory cascade or there is a continued generation of ongoing pro-
inflammatory markers [3,4]. 

This persistent inflammatory phenomenon was also found in conditions 
associated with poor nutritional status, gut microbiota dysbiosis, infections, 
dyslipidemia, and stress [4]. Inflammation plays significant components in 
uremic toxemia, oxidative stress, infections, dyslipidemia, malnutrition, volume 

overload and dialysis treatment, which are well known contributing factors to 
CKD progression and related cardiovascular complications [4,5]. Targeting 
inflammatory pathway plays a key role in therapeutic approach in CKD 
progression such as Renin-Aldosterone Angiotensin System (RAAS) blockers, 
Sodium Glucose Co-transporter 2 inhibitor (SGLT2i), Mineralocorticoid 
Receptor Antagonist (MRA) and other anti-inflammatory agents undergoing 
clinical development [6]. Despite evidence of clinical benefits of these 
medications as Standard Of Care (SOC) therapy, risk for disease progression 
persists, necessitating further search for a safe novel therapy targeting 
inflammation in high-risk patients for CKD progression. 

Recent evidence of systemic inflammation in CKD-associated gut dysbiosis 
has provided further mechanistic insight into the complex relationship between 
inflammation and molecular, immunological, and metabolic pathways in CKD 
progression [7,8]. Exploring gut microbiota modulation targeting inflammatory 
process to slow CKD progression is a pivotal intervention central to these 
complex and interrelated pathophysiological phenomena [9]. The purpose 
of this review is to briefly summarize the key roles of inflammation and gut 
microbiome changes in CKD progression and discuss gut microbiome-based 
therapy options to slow CKD progression.

Inflammation and CKD progression
Recent reviews on therapeutic options to retard progression of kidney 

diseases highlighted the central role of inflammation in initiation and outcome 
of CKD, including its significant relationship with pathophysiological pathways 
of hemodynamic, metabolic, and immunologic factors [4,6,10]. Potential 
therapy to slow CKD progression would, therefore, be multi-approach, 
preferably combination therapies to target the complex pathways addressing 
the various incompletely understood pathogenetic mechanisms [10]. The need 
for novel multi-approach to inflammation of CKD was further supported by 
recent findings that despite available effective agents such as RAAS blockers, 
SGLT2 inhibitors and MRA as standard of care therapy for kidney protection, 
a significant proportion of patients still develop ESRD [6,11,12]. This points to 
the fact that treatment gaps exist and significant limitations of clinical benefits 
by current SOC therapy in CKD. The unmet needs in high-risk patients for 
CKD progression necessitate discovery and development of novel therapies 
targeting inflammatory pathways.

Abstract
Chronic Kidney Disease (CKD) is a worldwide public health problem associated with high morbidity, mortality, and socioeconomic burden. Despite 
recent advances in pathogenesis and effective Standard of Care (SOC) therapy, the incidence of end stage renal disease remains high, attributed 
to the complex and diverse pathophysiological pathways in progression of CKD. Among the many pathogenetic pathways, inflammation plays 
the most central role in disease progression and related complications. Current SOC treatment to slow CKD progression has not adequately 
addressed these complex processes as a result of persistence of low-grade inflammation occurring at all stages of CKD. Previous attempts 
to address the inflammatory pathway with specific anti-inflammatory agents were, in certain cases discontinued for reasons ranging from drug 
safety to efficacy concerns, and business development decisions. Recent research findings demonstrating direct correlation between systemic 
inflammation associated gut microbiota changes and CKD progression, provided a potential novel therapeutic approach to target the inflammatory 
pathways. Exploring current scientific knowledge of modulating gut microbiome with microbiome-based therapies provides options in addressing 
these complex pathogenetic mechanisms of CKD-induced inflammation.

The purpose of this minireview is to discuss the role of inflammation associated with gut microbiome changes in CKD progression and gut 
microbiome-based therapeutic options to slow CKD progression.

Keywords: CKD progression • Inflammation • Gut microbiome



J Nephrol Ther, Volume 14:01, 2024Anteyi E, et al.

Page 2 of 6

Inflammation is a well-recognized pathway in CKD pathogenesis as 
demonstrated by reduced disease progression in response to intervention 
with anti-inflammatory agents [13,14]. Despite the potential benefits, clinical 
development of some of these anti-inflammatory agents were discontinued 
for reasons ranging from drug safety concerns to uncertain future investment 
returns and recent approval of SGLT2i and MRA in CKD treatment, raised the 
required standard for potential pipeline products in treatment of kidney disease 
progression [6,15]. Recent advances in gut microbiome-based therapy 
approaches provides additional opportunity to explore safe and effective novel 
anti-inflammatory to curb the high CKD and ESRD incidence [16,17].

The principle of inflammation is based on detection and elimination of 
harmful pathogens through interaction of resident renal parenchymal cells 
and various immune cells, a process initiated through either stress or injury, 
leading to irreversible tissue damage and organ dysfunction [10,18]. In the 
kidneys, the initial cellular interactions are between resident parenchymal 
immune cells (macrophages, dendritic cells) and circulating immune cells 
(monocytes, lymphocytes, neutrophils) [19]. The exact mechanistic process 
involved in inflammation of CKD progression is not well understood, but is 
known to include contribution from hemodynamic, immunologic, and metabolic 
etiological factors [20]. 

Further findings showed that even CKD that is not immune mediated in 
etiology, has inflammation playing a significant pathogenetic role in disease 
progression [21]. Initiation of inflammatory process depends mainly on resident 
immune cells whose key responsibility is to maintain tissue homeostasis 
between the Dendritic Cells (DC), macrophages, regulatory T cells (Tregs), 
CD8, NK lymphocytes, who are closely in contact and interact with renal 
parenchymal cells [22]. Once these cells are triggered by kidney injury 
from external or internal agents (microbial antigens, toxins, hyperglycemia, 
proteinuria) produce inflammatory mediators, initiating inflammatory cascade 
that sets the process of kidney disease progression. As a result of initiation of 
inflammatory process, a counter-regulatory physiological response is triggered 
to control inflammation, repair tissue damage, and restore homeostasis [23]. 

This key initiating step involve activation of DC, leading to enhance  in 
activity of CD8+T, CD4+T and TH2 causing glomerulopathy with infiltrations 
by macrophages thereby amplify repeated processes of repair and fibrotic 
changes [4,10,23,24]. The onset of glomerulopathy and proteinuria triggers 
RAAS which further increased production of several proinflammatory factors, 
cytokines, chemokines, and growth factors (Figure 1). These secondary 
responses activate innate immunity and signaling transcription factors 
particularly NK-kB, NLRP3 inflammasome, TLR, NrF2. 

The activated transcriptomes regulate proinflammatory and senescence 
factors (IL-6, TNFα, CCR2, CCR5, JAK-STAT2, MCP1, klotho-α), thereby 
setting a vicious cascade of aggravated inflammation and renal fibrosis [23,25] 
(Figure 1). Further insight in recent Acute Kidney Injury (AKI) and CKD models 
showed the inflammatory process in AKI persists and continues to CKD, even 
after the renal function was restored, confirming strong association between 
low-grade inflammation and slow development of disease progression 
and fibrosis [26,27]. Mechanistic studies of how the activation of these 
cells and receptors and outcomes measures are potential targets for novel 
therapeutic agents in CKD progression. Clear understanding of inflammatory 
pathways triggered by uremic toxins forms the basis to explore benefits of 
Live Biotherapeutic Products (LBP) as gut microbiome-based therapy in CKD 
progression [28].

Gut microbiome in CKD progression
The human gastrointestinal tract harbors complex commensal 

microorganisms of bacteria, archaea, small eukaryotes, and viruses called 
microbiomes. The human microbiome is predominantly located in the colon 
consisting mainly of diverse bacteria, whose cell composition is 10 times 
greater than human cells [29]. Factors affecting gut microbiota composition 
and function include host factors such as mode of birth delivery, gestational 
age, breastfeeding, age, diet, geographical location, antibiotic use, sanitation 
[28]. Various studies showed microbiome-host interactions modulate 
many vital functions in healthy human host such as metabolism, immunity, 
cardiovascular and neurological functions [30]. The gut microbiota and host 

are in a mutualistic relationship with microbiota utilizing host nutrients in a 
conducive environment and at same time modulating large vital functions of 
host immunity and metabolic process [31]. Additionally, these bacteria encode 
enzymes to produce metabolites essential to host health, such as vitamins, bile 
acids, choline, and Short Chain Fatty Acids (SCFA). 

The SCFA are fermentation products of non-digestible dietary 
carbohydrate by gut microbiota consisting mainly of butyrate, propionate, and 
acetate whose main functions are provision of energy source for colonocytes, 
maintain integrity of intestinal barrier, regulates glucose and lipid metabolism, 
and regulates immune system [32]. Specific aspects of immune regulation 
involve attenuation of NF-kB activation and inhibition of proinflammatory 
cytokine production through activity of Tregs cells, protecting against 
sustained activation of immune system [33,34]. In addition, SCFA inhibits 
histone deacetylases through their action on G-Protein Coupled Receptors 
which includes GPR41 (FFAR3), GPR43 (FFAR2) and GPR109a responsible 
for regulating various functions and metabolic effects of adipocytes, immune 
and vascular endothelial cells [35]. Persistent and low-grade inflammation 
is a known process associated with many chronic diseases like CKD, 
cardiovascular, metabolic syndrome, neurological and allergic disorder [36]. 

The initiation of inflammation starts with gut microbial-host interaction, 
resulting in functional and compositional changes of the four main microbiota 
phyla, namely Actinobacteria, Proteobacteria, Firmicutes and Bacteriodetes 

Figure 1. Summary of key roles of inflammation in initiation and progression of 
chronic kidney disease. Abbreviations: DC: Dendritic Cells; MC: Macrophages; IL: 
Interleukins; TNF: Tumor Necrosis Factor; GM-CSF: Granulocyte-Macrophage Colony 
Stimulating Factor; TGF: Transfer Growth Factor; NF-KB: Nuclear Factor-Kappa B; 
MCP1: Monocyte Chemoattractant Protein1; CCR2/CCR5: CC-Chemokine Receptor; 
NrF2-Keap1: Nuclear Factor-(erythroid -derived 2)- Like 2; Keap 1: Kelch-Like ECH-
Associated protein 1; ASK1: Apoptosis Signal-regulating Kinase 1 , JAK-STAT2:Janus 
Kinase/Signal Transducers and Activators of Transcription; PDE: Phosphodiesterase; 
ECM: Extracellular Matrix; EMT: Epithelial-to-Mesenchymal Transition.
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[37]. Evidence indicates that changes in microbiota composition and function 
(gut dysbiosis) causes gut inflammation and disruption of intestinal barrier 
integrity, (“leaky bowel”) results in activation of NF-kB pathway and eventual 
development of systemic inflammation [38]. Consequences of disrupted 
intestinal barrier includes translocation of bacterial toxins, Lipopolysaccharide 
(LPS), uremic toxins and endotoxemia with increased production of 
proinflammatory cytokines and gut-derived uremic toxins (IS, PCS, TMAO) 
which further worsens inflammation, increases proinflammatory cytokines 
and Reactive Oxygen Species (ROS) production [39,40]. High levels of 
uremic toxins have been implicated in pathogenesis of renal fibrosis and cell 
senescence through mechanistic reduction of klotho expression [41,42]. 

The relationship between kidney dysfunction and gut dysbiosis is 
bidirectional, termed ‘’Gut-kidney axis’’ in which CKD causes gut microbial 
changes (dysbiosis) and in turn worsens CKD, aggravated by complications 
of metabolic acidosis, hypervolemia, prolonged colonic transit time, antibiotic 
use, intestinal wall edema and poor dietary fiber intake [10,43-45]. The 
systemic inflammation induced by gut dysbiosis is characterized by increased 
composition of colon bacteria families possessing enzymes that generate 
uremic toxins compared to dietary fiber degraders that produce beneficial 
SCFA metabolite, given rise to reduced SCFA production, accumulation of 
harmful metabolites and endotoxemia prior to systemic inflammation [46,47] 
(Figure 2).

Targeting inflammation with gut microbiome-based therapy
Previous interventions in CKD progression directly targeting various 

specific inflammatory markers have not significantly reduced high CKD burden 
[48]. Various mechanistic studies have shown that current recommended 
RAAS blockers, SGLT2i, MRA and GLP-1 receptor agonist anti-inflammatory 
benefits were attributed to secondary reduction of glomerular hyperfiltration 
and proteinuria [49-51]. Additionally, there are ongoing clinical development 
of various therapeutic agents targeting specific inflammatory markers such 
as NrF2 activators, Endothelin-1 Receptor Agonist (ERA), Soluble Guanyl 
Cyclase Activator(sGC), Anti-inflammatory cytokines (anti-TNF, IL-6, CCL2, 
NF-kB) and cell therapy [52-54]. 

Several studies have reported that CKD -associated gut microbiome 

changes have a direct relationship with disease progression and live 
biotherapeutic interventions to restore colonic bacteria balance (eubiosis) are 
known to improve biochemical and clinical outcomes in CKD [55,56]. Targeting 
CKD- induced inflammation with microbiome-based therapy addresses 
pathways that reduce uremic toxins, increase beneficial SCFA metabolites, 
restores epithelial barrier, regulates immune system, and decreases persistent 
low-grade inflammation [57]. 

The dietary approach is well known cost-effective approach to modulate 
gut microbiome with recommendation that support plant-based diets and low 
animal protein to decrease bacterial proteolytic fermentation while promoting 
and increasing saccharolytic bacterial composition. This dietary regime 
affects microbiota composition that reduces inflammation and uremic toxin 
production associated with CKD progression and CVD complications [58,59]. 
The goal of gut-based microbiome intervention primarily is normalization of 
CKD-associated dysbiosis by reducing composition and activity of proteolytic 
bacterial species while increasing that of saccharolytic species, classified 
as prebiotics, probiotics and synbiotics [60]. Prebiotics are non-digestible 
carbohydrate fibers selectively used as substrates by host microorganisms to 
confer a health benefit (examples of dietary fiber are inulin, resistant starch, 
fructo- and galacto-oligossacharide) [61]. 

Probiotics are live microorganisms, which when administered in adequate 
amounts confer a health benefit on the host (examples of probiotic strains 
include, Bifidobacterium, Lactobacillus and Streptococcus species) [62]. 
Several studies reported probiotics significantly reduce gut derived uremic 
toxins, inflammatory markers and proinflammatory cytokines in all CKD 
stages. These clinical benefits corresponded to changes in colonic bacteria 
taxa providing further proof of gut-kidney involvement in CKD progression. 
Synbiotics is a combined therapy of prebiotics and probiotics synergistically 
reduce the effect of uremic toxins and ameliorate gut dysbiosis in CKD 
progression [63]. Intervention studies in advanced CKD using combination 
prebiotic (Inulin, fructo-oligosaccharide, galacto-oligossacharide) and probiotic 
(lactobacilli, streptococci, Bifidobacterium) showed altered composition of 
fecal microbiome with increased Bifidobacterium, and while pathogenic 
Ruminococaeceae were reduced [64,65]. In addition, various synbiotic 
interventions were reported to decrease protein bound uremic toxins such as 

Figure 2. Graphic illustration demonstrating complex relationship between CKD-associated gut microbiome changes (Dysbiosis) and Inflammation in development of chronic kidney 
disease progression. Adapted with Permission from: Mertowska P, Mertowski S, Wojnicka J, et al (2021). Link between Chronic Kidney Disease and Gut Microbiota in Immunological 
and Nutritional Aspects. Nutrients.; 13(10):3637. https://doi.org/10.3390/nu13103637
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p-cresol in Pre-dialysis and dialysis CKD populations [66].

A new concept of postbiotic as adjunctive or alternative therapeutic 
approach in gut homeostasis and immune modulation was recently proposed 
and the term postbiotic refers to products of non-viable bacteria or metabolites 
of probiotic organisms such as vitamins, SCFA, cell surface proteins and 
enzymes that have demonstrated positive effect on gut microbiome and 
host [67]. In contrast to synbiotic products, postbiotics have pharmacokinetic 
properties of absorption, distribution, metabolism, and excretion raising 
concerns on dosage and systemic toxic effects. An experimental postbiotic 
SCFA treatment demonstrated reduction of inflammation and oxidative stress 
in ischemia-reperfusion animal model of kidney injury [68].

Another Live Biotherapeutic Product (LBP) approach is fecal microbiota 
transplantation, as capsules or through colonoscopy, normally sourced from 
healthy donors with preclinical data showing potential benefits in CKD patients. 
This mode of therapy has recently gotten approval for recurrent Clostridium 
difficile infection and clinical benefits have equally been reported in metabolic 
syndrome, autism, IBS, and ESRD-associated bacteremia [69].

In comparison to drug therapy, some of the microbiome-based therapy is 
cheaper with well tolerated fewer side effects across spectrum of CKD /ESRD 
patients.

Conclusion
Inflammatory process plays a central role in the initiation and sustenance 

of CKD progression. The persistence of low-grade systemic inflammation in 
CKD is partly a reason partly given for the high burden of CKD and related CVD 
complications. Despite decades of available effective standard of care therapy 
to slow CKD progression such as RAAS blockers, SGLT2 inhibitor, MRA and 
GLP-1 agonist, the high incidence of CKD/ESRD still persists. The inability 
to reduce CKD public health burden showed that current interventions are 
inadequate to address the complex and interrelated pathogenetic pathways, 
particularly the key and central role of inflammation in initiation and progression 
of kidney disease. Hence, further clinical studies to identify novel therapies 
targeting inflammation will bridge scientific gap and address unmet needs of 
patients who are high risk for CKD progression. Gut dysbiosis is associated 
with systemic inflammation in CKD and hence microbiome modulation through 
microbiota-based therapy is a potential anti-inflammatory therapeutic product 
in retarding disease progression.
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