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Introduction
There are a great variety of microbial groups that coexist within 

the human body. The colon has about 1014 bacteria, far greater than 
the number present on the skin 1012 [1]. Every individual has a distinct 
gut bacteria composition, which is subject to change with age, with 
the highest differences occurring as we get older [2,3]. Gut microbials 
play a very important role in human health; for example, some of their 
more important activities include helping to break down hard-to-
digest proteins and fibers, and producing short-chain fatty acids such 
as acetic acid, propionic acid and butyric acid [4,5]. These short-chain 
fatty acids can have a significant effect on the T cells of the host, alter 
the regulation of inflammation in the intestine, and can even have an 
impact on the host's metabolism [6-9]. All of these suggest that our 
daily diet and/or pharmaceutical usage will affect the flora in the gut, 
which will in turn affect our health [10]. The gut microbiome plays 
an important part in the gut environment and influences the host's 
physiology and pathology [11]. The gut microbiome also affects our 
endocrine performance directly or indirectly through their metabolites 
[12]. The gut microbiome can also influence our neurological functions 
via the so-called “gut-brain axis” or “liver-gut axis” [13,14]. The gut 
flora have a core microbiome “enterotype” that is different for each 
individual [15]. Researchers have identified three enterotypes based on 
a variation of Bacteroides (enterotype 1), Prevotella (enterotype 2) and 
Ruminococcus (enterotype 3) [16]. When we age, the abundance of core 
microbes has a tendency to occur [17]. This change can be contributed 
by many factors, such changes in the composition of food [18,19]. 
The nature of the broader society can also have a significant effect, as 
the composition of gut microbes are different in industrial and non-
industrial countries due to environment and diet [20,21].

Literature Review
The study of intestinal flora began with the study of the rDNAs of 

intestinal bacteria; Subsequently, 16S rDNA that was PCR amplified 
from human feces was used as a reference [22-24]. Since many 
microbiomes have distinctive functions, understanding the precise 
composition of the intestinal microbiome may yield valuable insights 
as to the health status of an individual patient [25]. Thus, improvements 
in bioinformatics technology and high-throughput sequencing 
technology may allow us to process large quantities of data, helping 
to advance the field in a rapid and meaningful way (Figure 1) [26,27].

Alterations in the intestinal flora with age

Recently, some groups have analyzed the relationship between 
intestinal bacteria and aging, even to the point of being able to predict 
age from microbiome composition [28]. The diversity of the gut flora 
appears to be negatively correlated with age, raising the possibility 
that the maintenance or improvement of gut flora diversity maybe 
help counteract or slow the aging process [29]. It is also important to 
note that microbiota diversity appears to be associated only with the 
biological age of an individual, and not with their chronological age [30].

Newborns

Previous studies have shown that the unique microbes present in 
the placenta suspected to be the first microbes to colonize the intestinal 
flora during fetal development, and at least partially associated with the 
adverse reactions of pregnancy or premature birth [31,32]. However, 
it has also been shown that the microbial population in the placenta is 
very small, and that even more of the adverse reactions of pregnancy 
could result from vaginal microorganisms [33,34]. This putative effect 
of vaginal microbes on the reactions of pregnancy and preterm birth 
has been verified in multiple publications [35,36]. The delivery mode in 
particular appears to have a significant effect on the gut flora; vaginally-
delivered children are more likely to have the mother’s vaginal 
microbiota, while infants born by C-section are more likely to be 
colonized by Lactobacillus, Bifidobacterium, and Bacteroides [37]. This 
can have impacts on the incidence of childhood obesity, inflammatory 
bowel disease, food allergies, asthma, and diabetes mellitus [38-
40]. The gut flora can also be affected by many other factors such as 
breastfeeding. Breastfeeding can compensate for the colonization of 
B. bifidum and L. gasseri in C-section infants, resulting in flora more 
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newborn [50,51]. However, introducing solid food produces a dramatic 
switch of the microflora. One of the most critical changes involves 
Bifidobacteria and Lactobacillus, as these two genera of bacteria are 
known to be lower in adults compared to younger individuals [52]. 
Bifidobacteria are the most abundant gut flora in a breast milk-fed 
infant, and formula milk and dairy milk can change the abundance 
of the Bifidobacteria in the first 3 months after birth [53,54]. The 
introduction of solid foods migrates the baby's gut flora to a more adult 
composition [55,56]. The flora obtained from the mother gradually 
shifts to the acquired flora as the child gets older. Dietary structure is 
one of the most important factors. Malnourished children tend to have 
abnormal microbial composition, which may lead to increased risk of 
various diseases or even death [57].

Teenagers

Puberty represents a period of transition to independence, during 

similar to those observed in infants who underwent vaginal delivery 
[41,42]. Breast milk can increase Bifidobacterium and help promote the 
health of the baby. As children grow, the consumption of breast milk 
in the diet decreases, and the abundance of Bifidobacterium decreases 
[43-46]. Through careful monitoring of the growth environment, food, 
and use of antibiotics, parents can also have a significant impact on 
their babies’ intestinal flora [47].

School children

The bacteria that initially colonize a newborn are determined by 
the delivery mode.  Subsequently, the environment dramatically alters 
that newborn’s intestinal flora. For example, it has been demonstrated 
that a baby’s intestinal bacteria moves closer to those observed in its 
cohabiting family members [48]. Treatment with antibiotics can also 
significantly reduce the abundance of intestinal flora [49]. Breast-
feeding is perhaps the biggest factor affecting the intestinal flora of a 

Note: The intestinal flora has been affected by external factors such as diet, antibiotics, environment, and stress, from the beginning of the newborn to the end of 
the elderly. The mode of delivery has a huge impact on neonatal flora, then breast milk plays a vital role in young children. In adults, our lifestyles and eating habits 
affect our health through our gut flora, such as obesity and inflammation, and exercise improves this condition very well. The gut flora affects the host primarily 
through metabolic pathways such as SCFAs affect our body and brain through the "Gut-Brain Axis" and "Gut-Liver Axis".

Figure 1: Gut microbiome changes from newborn to aged.
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which major lifestyle changes take place; it is a critical period for future 
adult behavior. The differences in life span between males and females 
is well-studied [58,59]. The male sex hormone testosterone has been 
shown to correlate with increased pro-inflammatory cytokine release, 
while estrogens can reduce mitochondrial free-radical production 
[60]. In mice, the gut microbiota begins diverging between males and 
females in puberty [61]. Sex hormones potentially impact on the gut 
microbiome and its diversification in a gender-specific manner [61-
64]. Recent research has shown that the timing of androgen exposure 
can affect a mouse’s gut microbiome [65]. Since microbial exposures, 
sex hormones or both could have an influence on the age of human 
beings, the question is whether hormonal changes in puberty initiate 
gut microbiome shifts, or if changes in the microbiome influence 
sexual maturation and growth.

Adolescence is a pivotal period for brain maturation [66]. The 
lifestyle and physiological changes that occur during this period can 
be stressful, and may cause long-lasting detrimental changes [67-70]. 
Intestinal microbes susceptible to environmental influence may affect 
the development of the nervous system through the Microbiota-Gut-
Brain Axis [71]. The details of the Microbiota-Gut-Brain Axis and 
mental illness will be further discussed below.

Adults 

As human intestinal flora continues to be exposed to diet, antibiotics 
and other environmental factors, the composition of flora continues to 
evolve and become more and more complex, until it reaches its peak 
in adulthood [72-74]. In general, children have a higher number of 
enterobacteria than adults [52]. On the other hand, the intestinal flora 
of adults is very stable, but can be affected by many factors, including 
diet, antibiotics, geographical location, and seasonal/temperature 
conditions [75-83]. Even oxygen availability in high altitudes can affect 
the adult intestinal flora [84].

Interestingly, pregnancy can reset gut flora in adulthood [61,73]. In 
the early stages of pregnancy, some unique microbes can be detected in 
women who subsequently have preterm delivery [85]. Proteobacteria 
and Actinobacteria have also been shown to be increased in the third 
trimester of pregnancy relative to the first [86]. This shift is very similar 
to what is observed in obese populations [87]. Bacteroides-Prevotella 
group bacteria are also higher in overweight mothers [88]. The dietary 
consumption of pregnant women, particularly as it relates to probiotics, 
can have a significant impact on their blood glucose regulation [89]. Sex 
hormones can also affect pregnant women’s emotional state through 
the brain-gut axis [90].

Aged people

The intestinal flora of the elderly has been widely studied in an 
attempt to identify any correlations between aging and intestinal flora 
[91-94]. Thus far, there has been no clear conclusion on this topic [95]. 
It appears that there is little difference in the gut flora between young 
adults and the elderly, while there is a much greater difference in the 
gut flora of the elderly when compared with centenarians [96]. With 
advancing age, the elderly suffer a variety of increasingly serious and 
complex diseases, and the gut microbiota in the elderly is a reflection of 
this reality, showing an extreme variability in composition not usually 
observed in younger individuals [3]. Long-term hospitalized patients 
have a higher Bacteroidetes and Firmicutes composition (and thus, less 
microbial complexity) than other individuals, and higher microbial 
complexity is associated with resistance to vulnerability in the elderly 
[97,98]. Bifidobacterium and Lactobacillus in core microbiota was 

found to be quite different in the elderly as compared with younger 
adults [99,100]. The loss of Lactobacillus and Faecalibacterium and 
the increased abundance of the Oscillibacter and Alistipes genera 
and Eubacteriaceae family were found in older populations, while 
the ratio of Firmicutes/Bacteroidetes first rises and then falls with age 
[101]. The genus Alistipes is also overrepresented in aged mice [102]. 
The proportion of the families Ruminococcaceae, Lachnospiraceae, 
and Bacteroidaceae decreases with age, and the aged population also 
has a decreased presence of the beneficial bacteria of A. muciniphila, 
F. prausnitzii, lactobacilli, and bifidobacterial, along with increased 
presences of Clostridia, enterobacteria, Streptococci, Staphylococci, 
yeast and facultative anaerobes in gut microbiota [103,104]. This 
changed composition of flora may be largely associated with diet [105].

It is possible that gut microbiota interventions may extend 
lifespan and improve age-related diseases [106]. In traditional Chinese 
medicine (TCM), fecal microbiota transplantation was used some 
Chinese medicine to treat diseases, including Gegen Qinlian Decoction 
(GQD), Rhizoma Coptis, and yellow soup [107-110]. It has also been 
reported that fecal microbiota transplantation can extend the lifespan 
of mice and fish [111,112]. Have study showed that fecal microbiota 
transplantation can affects expression of host genes associated with 
the TOR-pathway (DEPTOR) and with cell adhesion and extracellular 
matrix composition (DSCAM) [113]. Other studies find that fecal 
microbiota transplantation prolongs life is considered to be associated 
with the suppression of chronic low-grade inflammation resulting 
from the intestinal luminal environment and tissue or produce short-
chain fatty acids (SCFAs) [114-116]. In addition, dietary management 
to control the composition of intestinal flora could be beneficial for 
counteracting the aging process [117,118].

The variation of microbiota in different age groups

Bifidobacterium, Eubacterium, Bacteroides and Lactobacillus are 
higher in younger individuals than in older individuals. In contrast, 
Ruminococcus is more common in older individuals. Bacteroides, 
enterococci, enterobacteria and clostridia do not change at all during 
aging [119,120].

The others factors influencing flora

 The intestinal flora can change for a variety of reasons [15]. Long-
term changes in diet and the use of drugs can affect the flora [10,99,121-
126]. On the dietary side, fructo-oligosaccharides (FOS), vitamins, 
creatine, bile acids, NO and colanic acid (CA) are among some of these 
factors [102,127-131]. On the pharmaceutical side, more than 75% of 
people age 65 or older take at least one prescription medication, which 
may affect the intestinal flora and even lifespan [119,122,132]. Several 
medicines showed attenuating or reversal effects on the aging process 
in animal models, and may also extend lifespan in humans [133]. 
Rapamycin, metformin, acarbose and NAD precursors have been 
particularly well-studied [134-138]. Rapamycin has long been known 
as a modulator of extended aging in yeast, and affected the life of the 
animal model such as Drosophila and mice with a way that is not fully 
understood [139-145]. Rapamycin plays a mechanistic role in longevity 
in mammals by targeting mTOR and regulating important cellular 
processes [146]. Short-term rapamycin treatment can improve health 
in mice, and down-regulation of the TOR pathway with RNAi supports 
the roles of nutrients and the mTOR pathway in lifespan [147,148]. 
Interestingly, the mTOR pathway has greater impact on females than 
males [149-151]. In animals, short-term rapamycin treatment can 
improve learning and memory as observed in the case of a low-calorie 
diet or caloric restriction (CR) [152-154]. T. Lactobacillus plantarum 
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can affect lifespan in Drosophila through a mechanism whereby lactic 
acid triggers ROS via the intestinal NADPH oxidase Nox [155]. SKN-
1/Nrf and DAF-16/FoxO-mediated transcription regulates protective 
genes when TORC1 is inhibited with rapamycin [143]. There is also 
a feedback loop in the TOR regulatory pathway, as SKN-1 increases 
the transcription of TORC1 pathway genes when TORC1 is inhibited, 
and the IIS and TOR pathways each influence aging by regulating 
SKN-1 and DAF-16 [143]. In addition, the most common used 
medicine in elder include acetylcholinesterase inhibitors (AchEIs), 
multivitamins, HMG-CoA reductase inhibitors (statins), analgesics 
(NSAIDs, weak and strong opioids), antihypertensives, antiplatelet 
agents (aspirin) and metformin [156-163]. In the above drugs, 
metformin can indirectly regulate the lifespan of the host by affecting 
the bacteria [164]. Metformin also extends lifespan through mTOR 
signaling, and it has been shown that the mucin-degrading species 
Akkermansia muciniphila is more abundant in mice which have been 
metformin treated [165]. The mechanism by which metformin inhibits 
mTORC1 is by activating AMP-activated protein kinase (AMPK) or 
the Ragulator complex (Rag GTPase), or by REDD1 upregulation 
[166,167]. Previous studies have speculated that metformin affects 
host longevity by changing the production of secondary metabolites, 
and by affecting level of folate metabolism in the host intestinal flora. 
However, there is no evidence to support that the lifespan of the host 
is affected when the level of folate in the host is changed [15,144,168].  
In a recent study, metformin was found to extend the host lifespan by 
affecting host lipid metabolism with metformin-bacterial interactions, 
and there is another research finding that Bacterial colanic acid (CA) is 
also known to promote longevity in C. elegans [169,170].

Intestinal bacteria and aging

Bifidobacteria has been recognized as a probiotic that plays an 
important role in human development [99]. Similarly, changes in 
gut flora composition can also affect human aging. For example, age-
related changes in the gut microbiome have implicated in decreases 
in immunity, gastrointestinal dysfunction, increased risk of infectious 
diseases, increased risk of cardiovascular diseases, liver diseases, 
alopecia, decreased ability to exercise and even Alzheimer's disease 
[94,171-178].

Obesity and gut flora

Obesity is a common and increasingly severe problem across the 
world [179]. Inappropriate diet may adversely impact our health by 
effecting microbial composition, with reverberating effects throughout 
the gut-liver-adipose tissue axis and intestine-islet axis [180,181]. 
Obese individuals are known to have specific microbial populations 
within their faeces, and even gastric bypass surgery (Roux-en-Y gastric 
bypass, or RYGB) can affect the composition of the gut microbiota 
[182,183]. RYGB is a treatment option for morbid obesity, and after 
surgical treatment with RYGB, obese individuals will undergo unique 
changes in their intestinal microbial community lead to further 
improvements in long-term weight loss, improved metabolic status 
and extended lifespan [184-186]. Fecal transplantation could also be 
a promising approach for treating the morbidly obese [187,188]. The 
species present in the gut microbiota can be affected by many factors, 
such as energy balance, delivery mode, antibiotics, diet, neural signals, 
genetics, health status, environment, lifestyle and endocrine factors 
[189-195]. Gut microbiota can influence adipose tissue metabolism 
through gut peptides (e.g. glucagon-like peptide-1 and -2) in the ECB 
system or by changing the short-chain fatty acids to affect metabolic 
diseases [196]. In mice, there is a well-studied interrelation between 

diet and the species composition of the gut microbial community [188]. 
For instance, Methanobrevibacter and Bacteroides thetaiotaomicron 
have been shown to lead to weight gain in gnotobiotic mice, and levels 
of Bacteroidetes and Firmicutes are significantly different between 
lean and obese mice [197-199]. Most intriguingly, Akkermansia 
muciniphila-induced obesity in mice can be cured by treatment with 
the prebiotic oligofructose, raising the possibility that similar dietary 
interventions may help reverse obesity in humans as well [200]. 

In humans, a number of studies have compared the gut flora of 
obese and normal-weight people, resulting in a number of insights and 
correlations [189]. For instance, Lactobacillus and Bifidobacterium are 
known to affect obesity or lean status in the gut [201]. Additionally, B. 
eggerthii is observed at higher levels in obese schoolchildren, and the 
abundance of Enterobacteriaceae is also higher in overweight children 
[202,203]. The Firmicutes/Bacteroidetes ratio may also be associated 
with degree of the obesity in schoolchildren [204]. In contrast, 
Akkermansia muciniphila-like bacteria and Desulfovibrio are more 
abundant in normally-weighted children [205].

Athletic ability and gut flora

As we age, loss of skeletal muscle mass and the probability of 
sarcopenia increase [177,206,207]. Exercise also plays a beneficial role 
in neurocognition by protecting the damage of hippocampal nerves 
through microbial flora [66,208]. Many studies have analyzed the gut 
flora of athletes. These efforts have shown that Low Carbohydrate High 
Fat (LCHF) diet can decrease the relative abundance of Faecalibacterium 
spp. and increase Bacteroides and Dorea spp. in the stool microbiota of 
race walkers [209]. A greater abundance of Akkermansia and Prevotella 
was also found in the gut microbiomes of sportsmen; the latter genus is 
particularly interesting, being mucin-degrading bacteria that can affect 
the biosynthesis of branched-chain amino acid (BCAA) [210,211]. On 
the other hand, the genus Veillonella utilizes exercise-induced lactate as 
its sole carbon source to make propionate, and fecal metabolites such as 
short-chain fatty acids (SCFAs), acetate, propionate, and butyrate are 
known to be increased in athletes as compared to sedentary individuals 
[212,213]. Veillonella metabolizes lactic acid through Methylmalonyl-
CoA-related gene expression during exercise [212,214]. The short-
chain fatty acids (SCFAs) converted from metabolic lactic acid by 
Veillonella can increase athletic ability by optimizing lipid oxidation, 
heart rate and maximum oxygen consumption [215-217].

Inflammation and intestinal flora

Gut dysbiosis is closely related to inflammation in the intestinal 
tract [172]. The immune dysfunctions seen in senescence-associated 
phenotype are associated with increased ROS [218,219]. The microbial 
changes associated with aging have a broad correlation with the 
occurrence of intestinal inflammatory disorders; in particular, the 
proportions of Proteobacteria and Firmicutes appear to be positively 
correlated with such disorders [220]. The number of anaerobic bacteria 
is also increased in the gut of the elderly [221]. Ruminococcus gnavus 
is increased in patients with Crohn's disease (CD), while the levels of 
Dialister invisus, Faecalibacterium prausnitzii and Bifidobacterium 
adolescentis are decreased [222,223]. Increased Actinobacteria and 
Proteobacteria and decreased Bacteroidetes and Lachnospiraceae 
are associated with inflammatory bowel disease (IBD) [224,225]. 
Akkermansia, TM7 bacteria, and Proteobacteria cause inflammation, 
as shown in the case of microbiota transferred from aged mice into 
young GF mice [226]. In particular, Akkermansia muciniphila  has 
been found to have many roles in human health and disease [201,227-
229]. Diet is very important for patients with inflammatory bowel 
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disease, particularly as it relates to probiotic intake [230]. Probiotics 
in the gut flora protect the host through the immune response system 
in the intestinal epithelial cells and help develop biofilms in the gut 
(such as Bacillus subtilis) [175,231-233]. All of these factors may also be 
affected by sex hormones [234].

The influence of gut flora on the brain

The gut flora is associated with the mental health of the host [71]. 
Therefore, the influence of the intestinal flora on the host nervous 
system has been widely studied, with some intriguing insights. For 
instance, it has been demonstrated that the microbes in the human gut 
can affect the nerves system by production neurochemicals [235,236]. 
Probiotics have also been shown to affect neurotransmitter levels and 
chronic inflammation that are associated neurodegenerative disease 
[237]. The change in gut motility, acidity and neurochemicals can 
also alter the microbial composition of the gut flora [182]. Together, 
this reciprocal interaction between the gut flora and the brain is 
referred to as the “Gut Microbiota-brain Axis”, and it is clear that 
disruptions of the microbial composition in the human gut can 
result in neurological disease by this axis [238-242]. For instance, the 
microbial composition of patients with depression has been shown 
to have a higher abundance of Enterobacteriaceae and Alistipes and a 
lower abundance of Faecalibacterium than observed in individuals not 
diagnosed with depression, and Faecalibacterium has been shown to 
protect against depression via microbiota transplantation [243]. Gut 
microbes have also been implicated in PD progression by producing 
SCFA to act on the enteroendocrine cells (EECs) [244]. Parkinson's 
disease in the elderly is often affected by the gut microbiota-brain axis, 
and intestinal infection can also trigger the occurrence of Parkinson's 
disease [245,246]. Together, these results would seem to suggest that 
fecal microbiota transplantation may provide treatment (or at least 
some level of preventative power) for many forms of neurological 
diseases.

Conclusion
Here, we provide a brief overview of the effects of gut microbiota 

on host health and aging. It seems clear that intestinal flora play an 
important role in human aging and age-related diseases. Of course, 
the intestinal flora is affected by the host's diet, antibiotic use, exercise, 
the external environment and the effects of the host's immune system. 
There are many ways to improve the health and healthy aging of the 
host by manipulating gut flora. The development of such treatments 
may provide a major opportunity for improving human health.
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