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Introduction
Intestinal-type tumors form glandular structures, often arise in 

patients with severe atrophic gastritis or persistent Helicobacter pylori 
infection and are strongly associated with intestinal metaplasia [1-5]. 
In comparison, diffuse-type GC displays poor cellular cohesion, poor 
differentiation, unresponsiveness to treatment, and worse prognosis 
[6]. The 2010 World Health Organization (WHO) classification 
scheme divides GC into papillary, tubular, mucinous, and poorly 
cohesive subtypes, in addition to a few less frequent histologic variants 
[7,8]. However, these histological classification schemes only have 
limited clinical utility to further stratify patients for chemotherapy, 
novel immunotherapy, and targeted therapies, and for predicting 
responsiveness and prognoses, due to the genetic heterogeneity and 
complexity of gastric cancers [5].

With mounting biological information from molecular profiling 
and expression analysis of gastric cancer in recent years, new 
comprehensive molecular classifications of gastric cancer have 
emerged. In 2014, The Cancer Genome Atlas (TCGA) project classifies 
the gastric cancer into four subtypes: tumors positive for Epstein-Barr 
virus (EBV+ GC), microsatellite unstable tumors (MSI), genomically 
stable tumors (GS), and tumors with chromosomal instability (CIN) 
[9]. In 2015, the Asian Cancer Research Group (ACRG) studies 
proposed a similar but not equivalent molecular classification that 
includes four subtypes: tumor with microsatellite stability (MSS)/
epithelial-mesenchymal transition (EMT), microsatellite-unstable 
tumors (MSI), microsatellite stable TP53-active (MSS/TP53+) GC, 
and microsatellite stable TP53-inactive (MSS/TP53-)[10]. The clinical 
utility of these new molecular classifications is still to be validated. 

While the TNM stage (established by the depth of invasion of 
gastric wall (T), the involvement of lymph nodes (N) and the presence 
of distant metastasis (M)) remains the most important prognostic factor 
for GC, several molecular markers including HER2, the mismatch 
repair (MMR) genes, E-cadherin gene (CDH1), and the inhibitors 
of immune checkpoint factors (programed death ligand-1 (PD-L1), 
programed death-1 (PD-1)), have emerged with specific clinical 
utility in guiding gastric cancer surveillance, diagnosis, prognosis, and 
treatment [5]. This review will explore the growing relevance of these 
molecular signatures in the diagnosis and treatment of gastric cancer.

Literature Review
HER2 and gastric cancer 

Clinical relevance of HER2 amplification and overexpression in 
GC: The proto-oncogene HER2, also known as CerbB-2 and ERBB2, 
is located on chromosome 17q21 and belongs to the Epidermal 
Growth Factor Receptor (EGFR) family with tyrosine kinase activity. 
HER2 plays a key role in regulating cell differentiation, proliferation, 
motility and signal transduction [11]. HER2 receptor activates its 
downstream regulatory events by spontaneous homodimerization or 
heterodimerization with other EGFR family receptors [11-13]. HER2 
amplification and overexpression were first discovered in breast cancer 
[14]. Subsequently, HER2 positivity has been observed in colorectal 
cancer, ovarian cancer, prostate cancer, lung cancer as well as gastric 
and gastroesophageal cancer [15,16]. We have found that strong HER-2 
amplification and overexpression occurring more frequently in well to 
moderately differentiated tumors than in poorly differentiated tumors 
and patients with HER-2/neu gene amplification had decreased survival. 
A larger number of studies have shown that HER2 overexpression are 
often associated with serosal invasion, metastases, higher disease stage, 
high frequent recurrence, and overall poor survival [17]. 

The overall reported frequency of HER2 overexpression in GC 
ranges from 7% to 53.4% with a mean of 17.9% [18]. In the ToGA trial, 
22% of gastric tumors were HER2 positive, and HER2 positivity differed 
significantly by histological subtype (intestinal 34%, diffuse 6%, mixed 
20%) and the site of the tumor (32% GEJ and 18% gastric body) [19]. 
Another study reported that positive HER2 amplification in 12.2% 
of the gastric and 24.0% of the gastroesophageal adenocarcinomas. 
HER-2 amplification was observed in 21.5% of the intestinal-type and 
2% of the diffuse-type of GC, showing no association with age and 
gender, but strong association with poor survival of GC patients [20]. 
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In addition, intertumoral heterogeneous HER2 expression is far more 
common in gastric carcinomas than in breast carcinomas [21]. The 
discordant HER2-positive results were observed between paired biopsy 
and resection specimens and between paired primary and distant 
metastases in HER2-positive GC cases [18,22]. Other factors that also 
affect HER2 status in GC include disease stages, interpretation of IHC 
results, old paraffin blocks, and antibodies used for IHC [23].

Trastuzumab is a monoclonal antibody directed against HER2 and 
was first introduced for the treatment of HER2-positive advanced breast 
cancer, with significant reduction in recurrence and improvement in 
survival [14]. In the ToGA trial, patients with unresectable HER2-
positive GC treated with chemotherapy and trastuzumab showed a 
statistically significant improved median overall survival of 4.2 months 
in a post-hoc analysis [16,24-26]. The proven benefits of trastuzumab 
in the ToGA trial made it the first molecular targeted agent approved 
as a standard treatment in gastric cancer. Other HER2-targeted 
agents including pertuzumab, lapatinib, trastuzumab-emtansine, and 
afatinib have been tested; and the efficacies of these agents were either 
unsatisfactory or similar as trastuzumab [27-31]. Taken together, HER2 
amplification and overexpression is not only a negative prognostic 
marker, but also a targeted therapeutic marker for gastric cancer. 
Therefore, it is imperative to determine the HER2 status in advanced 
gastric or gastroesophageal junction adenocarcinoma in order to select 
patients who may benefit from trastuzumab treatment.

Genomic alterations associated with HER2-positive GC: In 
addition to amplification/overexpression of HER2, a variety of genetic 
variations were also identified in the HER2+ GC. These include hot spot 
mutations most frequently found in TP53 (54%) followed by CDKN2A 
(4%), KRAS (2%), KIT (2%), and PIK3CA (2%), and concomitantly 
co-amplification of CCNE1 (8%), PIK3CA (8%), KRAS (2%), CDK4 ( 
2%), and CDK6 (2%) [32]. All HER2+ GC with concomitant CCNE1 
amplification tends to progress more rapidly after trastuzumab-
based chemotherapy [32]. On the other hand, only 17.4% of the TP53 
inactive GC subgroup displayed focal amplifications in oncogenes such 
as HER2. A small subset of these HER2+ and TP53- GC also harbor 
concomitant amplification of EGFR and/or MET and are associated 
with aggressive behavior [33]. Hence, combination therapy should be 
tested when enrolling these patients into anti-HER2 therapies.

HER2 testing in GC: Because of the differences in HER2 expression, 
scoring, and outcomes in GC relative to breast carcinoma, guidelines 
for HER2 testing in GC have been established by College of American 
Pathologists (CAP), Society for Clinical Pathology (ASCP), and 
American Society of Clinical Oncology (ASCO). HER2 testing should 
be performed for all patients with advanced GC who may benefit 
from HER2-targeted therapy. Testing can be performed on biopsy or 
resection specimens (primary or metastasis) or FNA specimens (cell 
blocks) prior to the initiation of trastuzumab therapy. HER2 status 
should be evaluated by IHC testing first, followed by ISH when IHC 
result is 2+ (equivocal) and evaluated in areas with strongest intensity 
of HER2 expression by IHC. Ruschoff/Hofmann method should be 
applied to score HER2 IHC and ISH results for GC [34]. HER2 IHC 
results are scores by a four-tier HER2 scoring system as 0, 1+, 2+, and 
3+, with scores of 0 and 1+ considered negative, 3+ as positive, and 2+ 
as equivocal [35]. HER2 positivity or overexpression by IHC is defined 
as strong complete, basolateral and lateral membranous reactivity in 
at least 10% stained tumor cells for resection specimens and a small 
single cluster of cells (or at least five cells) for biopsy specimens. HER2 
positivity or amplification by ISH is defined as a ratio of HER2 signal 
to CEP17 signal of ≥ 2.0 after at least 20 non-overlapping nuclei of 

tumor cells are evaluated for HER2 probe and CEP17 probe signal 
enumeration. If IHC is 2+ and there are three or more CEP17 signals, 
on average, with a ratio <2, then presence of more than six HER2 
signals, on average, is interpreted as positive for HER2 amplification 
by ISH/FISH [25,34].

Mismatch repair (MMR) system and gastric cancer 

Microsatellite instability and the mismatch repair genes system: 
Microsatellites are short DNA sequences consisting of repetitive 
arrangements (usually 10 to 60 times) of one to six nucleotides. 
Microsatellites are randomly distributed throughout the genome 
[9,36-38]. Correct replication of these highly repetitive DNA sequences 
is maintained by the mismatch repair (MMR) system, comprised of 
several proteins encoded by MLH1, MSH2, MSH6, and PMS2 genes 
[39-41]. The Msh2 and Msh6 protein form a heterodimer and interacts 
with Msh2/Msh3 to detect the replication error.  The mismatched 
nucleotide sequence can be removed and resynthesized with the 
subsequent recruitment of the Mlh1/Pms2 [40]. Dysfunction of MMR 
proteins lead to insertions and/or deletions in the microsatellite regions 
during DNA replication, a phenomenon known as microsatellite 
instability (MSI) [42,43]. The dysfunction is usually caused by the 
mutations in the coding region, promoter methylation, or loss of 
heterozygosity [40,44,45]. It has been shown that MSI tumors are 
associated with 100- to 1000-fold increased mutation rates throughout 
the genome when compared to microsatellite stable (MSS) tumors [44-
46]. The repetitive sequences of microsatellite DNA are particularly 
vulnerable to replication errors and can be used as a marker to evaluate 
the function of the MMR system [42].

Clinico-pathological features of MSI-GC

Gastric cancer with microsatellite instability (MSI-GC) represents 
a distinct subtype of GC as defined by both TCGA and ACRG studies, 
and MSI-GC is associated with elevated mutation rates in genes of 
oncogenic signaling pathways such as PIK3CA, ERBB3, ERBB2, and 
EGFR genes [9,10,47,48]. In addition, frequent mutations have been 
observed in genes regulating cell cycle regulation and apoptosis such 
as TGFβ RII, IGFIIR, TCF4, RIZ, BAX, CASPASE5, FAS, BCL10, and 
APAF1, and in genes in maintaining genomic integrity such as MSH6, 
MSH3, MED1, RAD50, BLM, ATR, and MRE11 [42]. Surprisingly, 
BRAF V600E mutation which was frequently reported in sporadic 
colon cancer caused by MSI, has not reported in MSI-GC [48].

The prevalence of MSI-GC was reported to be 8.5% to 37.8% 
and can be observed in either sporadic GC or in the setting of Lynch 
syndrome [42,44,45,49,50]. It is more frequently associated with old 
age, intestinal histotype, female gender, the distal stomach, earlier 
tumor stages, multiple synchronous gastric cancers, and better 
overall and tumor-specific survival [10,51,52]. In the sporadic setting, 
hypermethylation of MLH1 promoter was observed in over 50% of 
MSI GCs while mutations in MLH1 and MSH2 have been reported in 
12–15% of this GC subgroup [53]. In the setting of Lynch syndrome, 
dysfunction of the MMR system is caused by autosomal dominant 
mutations mostly in MLH1 and MSH2, less frequently in PMS2 and 
MSH6, and rarely due to epigenetic silencing of MSH2 [54]. Unlike the 
sporadic MSI-GC, patients with Lynch syndrome are at increased risk 
of developing various cancers at a younger age [40,44,45]. 

Most MSI-GC showed unique histological features including 
highly pleomorphic tumor cells with large vesicular nuclei, trabecular, 
nested, micro alveolar, or solid growth pattern, and abundant tumor-
associated inflammatory stroma consisting of either polymorphs and/
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or lymphocytes [55]. However, some MSI-GC could completely lack 
these histological features and are indistinguishable from MSS-GC. 
Evaluation of the microenvironment of the MSI-GC showed increased 
tumor-infiltrating lymphocytes (TIL) and high level and frequency 
of expression of immune checkpoint factors including PD-L1, LAG-
3, IDO, and CTLA4 [56,57]. It has been hypothesized that the higher 
mutational rate of microsatellite instability-high (MSI-H) tumors 
results in increased expression of neoantigens, which in turn, recruit 
and activate the TILs, inducing an intense immune response as well as 
the expression of immune checkpoint factors [53,57,58]. 

MSI status affects the survival and response to chemotherapy 
in GC: MSI-H colorectal carcinomas usually show a better prognosis 
when compared to microsatellite instability-low (MSI-L) tumors and 
should not receive adjuvant chemotherapy with fluoropyrimidine 
after resection [59,60]. Similarly, MSI-GC showed a 37% mortality 
risk reduction and improved median OS compared to MSI-L or 
MSS- GC patients [60]. Results from the MAGIC trial showed that 
MSI and MLH1 deficiency in patients treated by surgery alone led 
to better outcomes, while it had a negative prognostic effect in those 
treated with chemotherapy [61-63]. Moreover, MSI-GC demonstrated 
higher 3-, 5-, and 10-year disease-specific survival rates compared 
to MSS patients even with positive resection margins (R+) [61,62]. 
Interestingly, a prospective genomic-profiling research showed that 
metastatic MSI-GC on standard cytotoxic therapy progressed more 
rapidly with a significantly shorter progression-free survival compared 
with MSS patients [63]. However, when these fast-progressing patients 
were treated with anti-PD-1 antibodies either as a single therapy or in 
combination with anti-CTLA4 antibodies, almost 50% of the patients 
showed durable immunotherapy responses [64]. Targeting immune 
checkpoints with monoclonal antibodies has recently become the 
promising strategy for treatment of several tumors [58,65,66]. In 
the Keynote-012 trial, 17% of all patients with advanced GC were 
determined to be MSI-H GC and 50% of these patients reached partial 
response to pembrolizumab, even in patients without detectable 
PD-L1 expression [67-69]. Similar results were also observed in the 
KEYNOTE 059 trial, where patients with MSI-H group of gastric or 
gastroesophageal junction advanced adenocarcinoma showed an 
impressive reported ORR of 57% with the response duration ranging 
from 5.3 to 14.1 months [70-72]. In the Checkmate 032 trial, 28% of all 
patients with metastatic GC were determined to be MSI-H, and ORR 
to nivolumab was the highest (29%) in MSI-H patients. In addition, the 
MSI-H patients reached longer median OS (14.75 months) compared 
with the other subgroups [67,73]. These studies suggest that the MSI 
status should be determined to avoid enrolling MSI-GC patients 
into unnecessary chemotherapy regimens, and MSI can be used as 
predictive biomarker of response to immunotherapy and of prognosis. 

Diagnosis of MSI: Currently, there are several well-validated 
methods to evaluate the functionality of the MR system, including 
amplification of microsatellite sequences of representative genomic loci 
by polymerase chain reaction (PCR), evaluation of nuclear expression 
of MMR proteins by immunohistochemistry (IHC), and detection of 
MSI by next-generation sequencing (NGS) [44,53,54]. 

Deficiency of MMR proteins usually result in insertions or 
deletions of nucleotides in the microsatellite regions during DNA 
replication [37,40,74]. The variation of microsatellite regions can be 
detected by PCR, using specific primers to amplify certain specific 
microsatellite loci in both tumor and normal tissue [75-77]. MSI can 
be determined by the presence of shifts in the size of the amplicons 
from the microsatellite loci in tumor and normal tissue. To increase 

the specificity and sensitivity and ensure the reproducibility and 
standardization between different laboratories, five microsatellite 
markers, including  two mononucleotide loci (BAT-25 and BAT-26) 
and three dinucleotide loci (D2S123, D5S346, and D17S250) were 
recommended by Bethesda Panel as references for diagnostic testing 
[36,54,77,78]. MSI-H status is defined by a shift in size in at least 2/5 
microsatellite loci, MSI-L by a shift in size in 1/5 loci, and microsatellite 
stable (MSS) by no shift in cancer tissue compared to the reference 
[36,44,54,76-78].

Alternatively, MMR deficiency can be determined by IHC to 
show the loss of nuclear expression of one or more MMR proteins. 
Monomeric MLH1 and MSH2 are stable, while PMS2 and MSH6 are 
unstable as monomers and quickly degrade [36,40,44]. Thus, tumors 
with MLH1 or MSH2 mutations usually show loss of not only the 
affected protein, but also their functional partners, PMS2 or MSH6, 
respectively. On the other hand, PMS2 or MSH6 mutations would 
show loss of only the affected protein [36,40,44,78]. Although as an 
indirect method to assess MSI, the performance of the IHC method 
is comparable with that of the PCR method with >90% concordance 
rate [38]. However, IHC cannot detect the missense mutations of the 
MLH1 or MSH6 genes that render the protein unfunctional but still 
retain the antigenic epitope for the IHC antibodies [36,38,42]. In these 
cases, the MSI status can only be evaluated by either PCR-based testing 
or NGS. 

The microsatellite status of a tumor can also be determined by NGS 
with coverage of a broader range of microsatellite loci. The disadvantages 
of this method are higher initial costs, longer turnaround time needed 
to perform the sequencing, and the requirement of bioinformatics 
analysis to interpret the data [79-81].

Immune check point factors and gastric cancer 

Frequency of PD-L1/2 expression in GC: With the success of 
immune-checkpoint inhibitors in the treatment of many types of tumors 
including advanced gastric carcinoma, immunotherapy has gained 
considerable attention [82-85]. Recent molecular characterizations of 
the GC have shown elevated PD-L1/2 expression in both EBV positive 
(EBV+) and MSI-GC subtypes which may more likely respond to 
immunotherapies [9,10,86].

PD-L1 (B7-H1), a member of the immunoglobulin superfamily B7, 
is a 290aa transmembrane glycoprotein encoded by the CD274 gene 
located on chromosome 9 and is the ligand of programmed cell death 
1 (PD-1) [87-90]. PD-L1 is normally expressed in antigen-presenting 
cells including dendritic cells, macrophages, and monocytes, but 
also aberrantly on the cell surface of a wide variety of solid tumors 
[88,89,91,92]. PD-1 (PD-L1 receptor) is usually expressed by activated 
T-cells, tumor-infiltrating lymphocytes (TILs), and other immune 
cells [4]. Another ligand for PD1 is PD-L2 (also known as B7-DC and 
CD273) which is thought to be a PD-L1 homologue arising through 
gene duplication within 100 kb of each other in chromosomal region 
9p24.1 [93-95]. Unlike PD-L1, PD-L2 is usually inducibly expressed 
on dendritic cells, macrophages, bone marrow–derived mast cells, 
and certain tumor cells [96]. The PD-1/PD-L1/2 interactions are 
considered as important immune check point, which leads to the 
suppression of T-cell receptor signaling and the down regulation of the 
immune response to maintain the tolerance of self-antigens in normal 
host [87,97]. The inhibitory effects on the immune response by these 
checkpoint regulators would also allow the tumor cells to escape host 
immune destruction [88,89,97,98]. Targeting the PD-1/PD-L1 immune 
checkpoint by therapeutic PD-1/PD-L1 inhibitors could restore the 
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cancer cell-directed immune response by improving the immune 
functions of tumor-specific T cells [99-101]. 

The EBV+ GC represents roughly 7-10% of all GC with no 
difference between intestinal and diffuse histological types and among 
geographical regions but is more prevalent in younger patients and 
in males, with a male/female ratio of 2:1 [9,10,102,103]. In EBV+ 
GC, PD-L1 expression was observed both in tumors (50% of cases) 
and in tumor-surrounding immune cells (94% of cases) [57, 105]. In 
addition, 15% of EBV+ GC showed amplification in the chromosomal 
region 9p24.1 which contains the PD-L1 and PD-L2 loci [104,105]. 
The frequency of PD-L2 positivity in EBV + GC is much lower and 
was observed in tumor cells of 22% of cases and in stromal immune 
cells of 38.8% of cases [106]. In contrast, a lower PD-L1 expression 
was observed in tumor cells of 10% of EBV- GC cases and in tumor-
surrounding immune cells of 39% of EBV- GC cases [100]. Similar 
findings were reported in other retrospective studies in which PIK3CA 
and PD-L2 were more highly expressed in EBV+ GC than in EBV- 
GC [104,105]. As previously mentioned, MSI-GC is characterized by 
increased lymphocytic infiltrate with significantly higher rates of PD-
L1 expression (37-87%) and PD-L2 expression compared with MSS 
-GCs. PD-L1 expression was more frequently observed in 61% for 
EBV+ GC and 37% of MSI GCs [105].  

PDL-L1/2 expression as a prognostic biomarker for GC: The 
correlation of PD-L1 expression with the prognosis in patients with 
GC is still considered controversial due to the conflicting reports. Some 
studies claimed that PD-L1 expression was independently associated 
with improved longer survival [107,108]. Others reported that PD-L1 
expression was not associated with a poor prognosis in patients with 
gastric cancer [109,110]. However, most studies showed that PD-L1 
expression is an independent negative prognostic predictor for GC. 
Expression of PD-L1 was significantly associated with tumor size, 
invasion, lymph node metastasis, advanced clinical and pathological 
stage, and shorter survival time of patients [107,108,111-113]. In 
addition, several meta-analyses have demonstrated that PD-L1 
overexpression is a worse prognostic factor in GC [100,114,115]. It has 
been hypothesized that the poor prognosis of GC with positive PD-
L1 expression are related to its inhibitory effects on tumor-specific T 
lymphocytes [116]. The PD-L2-positivity in the stromal immune cells 
correlates with lower T stage, negative lymph node metastasis, and 
perineural invasion, but with no prognostic impact on DFS of EBV + 
GC [106].

PD-L1 expression as a predictive biomarker for response to 
immunotherapy: Several PD-1/PD-LI inhibitors have already been 
approved by the FDA for cancers like non-small cell lung carcinoma 
(NSCLC), Merkel cell carcinoma, and melanoma. The commonly 
known inhibitors include PD-1 inhibitors (pembrolizumab, nivolumab) 
and PD-L1 inhibitors (avelumab, durvalumab, atezolizumab) [83,117-
120]. All these inhibitors are also being tested for efficacy in treating 
GC in various phases of several ongoing clinical trials. Based on 
the encouraging early phase results obtained by KEYNOTE-012 
(NCT01848834), KEYNOTE-028 (NCT02054806) FDA accelerated 
the approval of pembrolizumab for the treatment of patients with 
PD-L1-positive recurrent or advanced GC who have received 2 or 
more lines of chemotherapy [69,73,121]. Results from ONO-4538-
12 (NCT02267343) phase III clinical study showed that nivolumab, 
significantly improved OS, PFS and ORR compared to placebo as 
a rescue treatment after failure of standard chemotherapy for GC 
[122]. Preliminary results from phase Ib/II studies (NCT02572687) 
demonstrated that durvalumab in combination with ramucirumab, an 
anti-VEGFR-2 inhibitor, induces synergic antitumor effects in GC [123].

Currently, PD-L1 expression is the only available biomarker in 
predicting the tumor response and survival prognosis as the results 
from various clinical trial showed that increased response rates and 
longer overall survival (OS) were observed in patients with higher PD-
L1 expression [124,125]. However, many studies showed that PD-L1 
expression was not sufficient to fully differentiate responders and non-
responders: consistent responses were only observed in a fraction of 
patients with high PDL-1 expression, while durable responses were 
also observed in patients with negative PD-L1 expression [126-129]. 
Even long-term favorable clinical outcomes were seen be achieved in 
patients that are PD-L1 negative [130-132]. A variety of causes may 
contribute to the misclassification of the PD-L1 expression status 
including dynamic and heterogeneous PD-L1 expression in different 
tumor histology, tumor sampling, use of archived material for testing, 
existence of various antibody clones, positivity or negativity cut-
offs, and sometimes the scoring system [128,133-137]. Although 
some studies tried to identify other predictive markers for PD-1/
PD-L1 inhibitors such as tumor mutation burden, EBV status, or 
MSI status, none of them has been routinely used in clinical practice 
[110,125,138,139]. In fact, according to the FDA, pembrolizumab 
must be used in conjunction with its companion PD-L1 test in GC, 
while testing PD-L1 expression for nivolumab and atezolizumab are 
considered complementary [12,14]. 

Testing for PD-L1 expression in GC for pembrolizumab: 
Evaluating the PD-L1 expression for treatment of GC with 
pembrolizumab is different from that in NSCLC or other cancer 
types [84,133]. PD-L1 expression was assayed using FDA-approved 
PD-L1 IHC 22C3 pharmDx on sections from formalin fixed paraffin 
embedded tissue blocks. The number of PD-L1-stained cells (clear 
membranous stain with or without cytoplasmic stain at any intensity) 
including tumor cells, lymphocytes, and macrophages are counted 
in the areas that contains at least 100 viable tumor cells. A combined 
positive score (CPS) is calculated by dividing the total number of all 
PD-L1 positive cells (tumors cells, lymphocytes, and macrophages) 
by the total number of viable tumor cells. A CPS ≥ 1% is considered 
positive for PD-L1 expression [133,140]. In the KEYNOTE-059 trial, 
the CPS has been shown to be a robust, reproducible PD-L1 scoring 
method that predicts response to pembrolizumab in patients with G/
GEJ cancer better than the tumor proportion score (TPS) [133,141].

Diffuse-type GC and E-cadherin (CDH1): The diffuse type GC 
represents 32% of all GC and is more frequently associated with female 
and young patients [6,142,143].  It is enriched in the GS-subtype by 
the TCGA classification scheme and in the EMT subtype by the ACRG 
classification scheme [9,10]. Unlike the complicated genetic variations 
that underlie carcinogenesis in intestinal-type tumors, diffuse-type 
GC most frequently harbors molecular defects in the E-cadherin gene 
(CDH1), resulting the loss of expression of the cell adhesion molecule 
E-cadherin [144]. Somatic mutations of CDH1 have been detected in 
approximately 30% of sporadic diffuse gastric carcinoma (SDGC) and 
are associated with poor prognosis [9,145,146]. Germline mutations 
of CDH1 were found in about 40% of patients with hereditary diffuse 
gastric cancer (HDGC) and are inherited in an autosomal-dominant 
pattern [143,147]. In addition, the epigenetic inactivation by promoter 
hypermethylation of the CDH1 gene may also contribute to GC 
development [148,149]. 

CDH1 and HDGC: HDGC accounts for about 1-3% of gastric 
cancers and is characterized by early-onset of the disease with familial 
clustering [150,151]. By genetic linkage and sequencing analysis, 
mutations in CDH1 gene were first identified as the genetic cause for 
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early-onset, diffuse gastric cancer in large kindred from New Zealand 
[152].  Since then, more than 150 different CDH1 germline mutations 
have been identified in HDGC families of multiple ethnical origins 
[153,154].  These pathogenic mutations spread across the entire CDH1 
gene including small insertions and deletions, large exon deletions, 
missense mutations, nonsense mutations, and splice site mutations 
[153,155]. The location or type of germline CDH1 mutation does not 
correlate with phenotype, particularly in regard to the presence of 
lobular breast cancer in HDGC families [153,155]. 

Patients with CDH1 germline mutations carry a relatively high 
risk of developing advanced GC and breast carcinoma with incomplete 
penetrance [153,155,156]. Prior study showed that the mean age at 
diagnosis of advanced GC was 40 years (range, 14–85 years) [157]. 
The cumulative risk for gastric cancer is 67% for men and 83% for 
women by age 80 years, and the cumulative risk for breast cancer is 
39% [156]. The combined risk of gastric cancer and breast cancer in 
women is 90% by age 80 years [153,155,158]. The prognosis of HDGC 
patients with germline CDH1 mutations are worse with an overall five-
year survival rate of only 4% comparing to 13% in patients without 
CDH1 mutations [154] while germline CDH1 mutations accounts for 
about 40% of HDGC, the genetic causes of 60% of HDGC remains 
unknown [143,147,159].  Mutations in several candidate genes have 
been identified in HDGC patients without CDH1 mutations, including 
CTNNA1, MAP3K6, BRCA2, PALB2, INSR, FBXO24, and DOT1L. 
However, the significance of these mutations needs to be confirmed 
in more patients to determine their genetic linkage, prevalence, and 
penetrance [33,153,159-161]. As such, genetic testing for HDGC 
is restricted to CDH1 gene per current guideline defined by the 
International Gastric Cancer Linkage Consortium (IGCLC) [33]. 

Molecular pathogenesis of CDH1 mutation in GC development: 
E-cadherin is a transmembrane protein of the cadherin superfamily 
encoded by the CDH1gene located in human chromosome 16q22.1 
[162]. The mature E-cadherin protein consists of a cytoplasmic 
domain, a single transmembrane domain, and an extracellular domain 
with five tandem repeat regions [163]. The cytoplasmic domain of 
E-cadherin interacts with α-, β-, and γ-catenins to form cadherin-
catenin complexes, linking the cadherins to the actin cytoskeleton 
network and to many other transmembrane and cytoplasmic proteins 
[164]. The epithelial cell-cell adhesion is mediated through the 
homophilic interactions between the extracellular domains of the 
cadherin molecules in a calcium-dependent manner [165]. These 
structural functions of E-cadherin create an intricate transcellular 
network (adherens junction) and are essential in regulating a variety 
of cellular processes including cell migration, differentiation, tissue 
architectural homeostasis, endocytosis, exocytosis, autophagy, signal 
transduction, gene expression, and receptor/channel recycling [165-
171].  Inactivation of E-cadherin leads to loss of cell adhesiveness and 
impaired cell-proliferation signaling pathways resulting in abnormal 
morphogenesis, unregulated growth, and invasion of adjacent tissues 
through epithelial-mesenchymal transition [168,169,171-175]. 

Several lines of evidence suggest that E-cadherin deficiency is likely 
the initiating event in the tumorigenesis of HDGC. Down-regulation 
of E-cadherin expression is first observed in the presumable gastric 
epithelium stem cells residing in the upper isthmus of the gastric gland 
[152,176]. E-cadherin expression is consistently reduced or completely 
lost in not only the multifocal microscopic foci of signet ring cells 
(SRC), the earliest apparent HDGC disease, but also in late stage HDGC 
in CDH1 germ line mutation carriers [74,177].  The downregulation 
of E-cadherin in both the in situ and invasive components of HDGC 

with germ line mutations suggests that inactivation of CDH1 requires a 
second hit for disease initiation. Potential molecular mechanism behind 
this secondary hit includes somatic mutation, loss of heterozygosity 
(LOH), and epigenetic silencing by promoter hypermethylation of the 
second of CDH1 allele [178-181]. Studies have shown that promoter 
hypermethylation accounts for 50% of cases, while mutation and LOH‐
mediated gene inactivation are less frequently [178-181]. However, 
inactivation of CDH1 alone is not sufficient for development of tumor 
invasion. Additional disease modifying genes including SMAD4, 
C-SRC, and TP53 might be involved in tumor invasion and metastasis 
[174,182,183].  

Clinical management of patients with germline CDH1 mutations: 
HDGC is a highly invasive tumor that is usually identified at advanced 
stage with a poor prognosis. Individuals with germline CDH1 mutations 
carry a high lifetime risk for developing HDGC with the median age at 
diagnosis of age 40 [156,184].  Therefore, optimal clinical management 
of these high-risk individuals requires identification of asymptomatic 
mutation carriers followed by prophylactic gastrectomy at the 
appropriate age, or endoscopic surveillance followed by therapeutic 
gastrectomy if diffuse gastric carcinoma was detected [155,185,186]. 

Only selected patients who meet the following the 2015 IGCLC 
criteria are eligible for genetic testing to identify germline CDH1 
mutation carriers: 1) two or more gastric cancer cases in one family 
at any age, with at least one confirmed diffuse gastric cancer; 2) diffuse 
gastric cancer under the age of 40 years without a family history; or 
3) family history with the diagnoses of both diffuse gastric cancer and 
lobular breast carcinoma, at least one under the age of 50 years [34]. 
Additionally, families in whom genetic testing could be considered 
include: presence of bilateral lobular breast cancer or family history 
(first or second degree relative) of two or more cases of lobular breast 
cancer below age 50; a personal or family history (first or second degree 
relative) of cleft lip/palate in a patient with diffuse GC; or an individual 
with in situ signet ring cells and/or pagetoid spread of signet ring cells 
on a gastric biopsy [33]. The sensitivity, specificity, positive predictive 
value and negative predictive value of the 2015 IGCLC criteria were 
0.79, 0.70, 0.19, and 0.97, respectively [187]. 

Discussion
Genetic testing should begin at the age of consent (usually 16 - 18 

years of age) for individuals from affected families [33,155]. Testing 
of younger unaffected family members can be considered on a case-
by-case basis [33]. Factors such as the emotional and physical health 
of the individual and the earliest age of gastric cancer in the family 
should be considered [155]. Because there are no hot spot regions of 
CDH1 gene and no genotypic/phenotype correlations in regard to 
the risk of developing GC, genetic testing should be accomplished by 
direct sequencing of all coding regions of the gene, including intron-
exon boundaries [104]. The missense mutations must be individually 
validated for their pathogenic relevance. Usually, this can be achieved 
using computational methods including frequency in normal controls, 
co-segregation within the pedigree, recurrence of the mutation, 
and in silico tools such as structural modelling and SIFT software 
in combination with databases containing CDH1 sequencing data 
[154,188]. For difficult cases, in vitro functional cell model or animal 
models may be needed to evaluate the impact of CDH1 missense 
alterations in protein structure, trafficking, and signaling [179,188,189]. 

The signet ring cell carcinoma in patients with CDH1 mutation 
initially locates beneath the foveolar epithelium and only become 
visible on endoscopy late in the disease process [190,191]. Therefore, 
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prophylactic gastrectomy, rather than endoscopic surveillance, is 
usually recommended for CDH1 pathogenic variant carriers after 
age 20. However, endoscopic surveillance is needed if gastrectomy is 
contraindicated owing to the comorbidity, younger than recommended 
age for surgery, CDH1 variants of undetermined significance, or the 
patient refuses surgery. Endoscopy should be performed annually using 
a white light high definition endoscope in high risk individuals and any 
endoscopically visible lesions should be biopsied [33]. Theoretically, 
1768 biopsies are needed to assure a 90% rate of detecting at least 1 
cancer focus [192]. A minimum of 30 biopsies is recommended, with 5 
biopsies taken from each of the following anatomic zones: pre-pyloric 
area, antrum, transitional zone, body, fundus, and cardia, as described 
in the Cambridge protocol [158]. However, detection of early stage 
disease with direct endoscopic visualization is extremely difficult and 
only a small percentage of cancerous infiltrates were identified by 
endoscopic examination [184,193,194].

The recommended surgical management for carriers of a proven 
pathogenic germline CDH1 mutation is prophylactic total gastrectomy 
in their 20s or 30s [33]. However, the optimal time for gastrectomy 
should be individualized based on pathogenic significance of CDH1 
mutation, the age of onset of disease in the pedigree, and the penetrance 
pattern of particular kindred [147,194,195]. Prophylactic gastrectomy 
carries a 3-6% mortality rate and a 100% morbidity rate due to post-
surgery eating habit changes, dumping syndrome, diarrhea, and weight 
loss [194]. Current guidelines recommend a total gastrectomy with 
Roux-en-Y reconstruction [154]. Because the CDH1 pathogenic variant 
is present in all gastric tissues, all gastric mucosa should be removed, 
and the negative margins confirmed during prophylactic gastrectomy 
[33,195]. It is reasonable to performed D1 lymph node dissection as 
the majority of HDGC patients will have at least T1a disease and the 
presence of T1b lesions cannot be ruled out preoperatively [196,197]. 

Due to the increased risk of lobular breast cancer in women with 
pathogenic CDH1 mutations, current guidelines suggest that annual 
breast magnetic resonance imaging should start at age 30, and treatment 
decisions should be made on a case-by-case basis [33,198]. Finally, it 
is recommended that the gastrectomy and mastectomy specimens of 
CDH1 mutation carriers should be fully examined microscopically to 
determine the stage of cancer and better understand the phenotype and 
biology of this disease [33].

Conclusion
Gastric cancer is a highly heterogeneous disease as reviewed 

by recent molecular profiling and classification. Distinct molecular 
signatures including HER2 overexpression, MSI status, PD1/PD-
L1 expression patterns, CDH1 mutations, have been shown to be 
associated with different GC subtypes. Identifying these molecular 
signatures in GC could provide instructive information for prognosis, 
stratifying GC patients with optimal treatments, and eventually 
improving clinical outcomes.
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