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1.Introduction 
In this article, we propose a matrix representation of an oriented star 

α with α coefficient [1] and define two directions of orientation. It 

is therefore possible to orient a star α with α coefficient in two 

different ways, directly and indirectly (picture 1). 

 
A star with α coefficient is composed of five numbers outside a, b, 

c, d, e and five numbers inside T1 , T2 , T3 , T4 , T5 These last five 
numbers are written in the form of 5-tuple (T1 , T2 , T3 , T4 , T5) 
(Figure 2). 
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In addition to having the sum α in each line. 
 

The scalars α are called the star coefficient if α is a solution of 
equation α=T1(α)+T2(α)+T3(α)+T4(α)+T5(α)(Noted by 
α), a vector (T1 , T2 , T3 , T4 , T5) is called a solution vector of 
this Star-System with α coefficient in five unknowns. 

 

The present paper is organized as follows: In Section 2, we 
present some preliminary results and notations that will be useful 
in the sequel. In Section 3, we will use the convention here that the 
star α  has a positive or a negative (picture 1) orientation besides 
orientation of a star α. Another way to think of a positive 
orientation is that as we traverse the path following the positive 
orientation the star α must always be on the left (that is, one may 
also speak of orientation of a (5 × 5) matrix, polynomial of degree 
5, etc.). We present some examples of Star-matrix directly or 
indirectly. 

2. Some Basic Definitions and Notations 
In this section, we introduce some notations and star-system with 

coefficient α defined [1]. 

2.1. A star-system with α coefficient: 
Dfinition 1 : Let a, b, c, d, e and α be real numbers, and let T1 , T2 , 

T3 , T4 , T5 be unknowns (also called variables or indeterminates). 

Then a system of the form 

{  
  T1 + T2 = α − a − cT2 + T3 = α − b − dT3 + T4 = α − c − eT4 + T5 = α − a − dT5 + T1 = α − b − e 

 

is called a star-system with α coefficient in five unknowns. We 

have also noted ★[a; b; c; d; e; α] = α. The scalars a, b, c, d, e 

are called the coefficients of the unknowns, and α is called the 

constant "Chaff" of the star-system in five unknowns. 
 
A vector (T1 , T2 , T3 , T4 , T5) in R5 is called a star-solution vector 

of this star-system if and only if ★[a; b; c; d; e; α] = α. if and only 

if ★[a; b; c; d; e; α] = α.  

The solution of a Star-system is the set of values for T1 , T2 , T3 , 
T4 and T5 that satisfies five equations simultaneously. 
  
2.2. A star-element: 

A star-element [1] is a term of the five-tuple (T1 , T2 , T3 , T4 , T5) 
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solution of a star-system ★[a; b; c; d; e; α] = α, wher (T1 , T2 , T3 , 

T4 , T5) in R5. 
 
2.3. Star-Coefficient or Constant "Chaff": 

The star-Coefficient or Constant "Chaff" [1] is also noted by α★ 

and is a solution of equation : α=T1(α)+T2(α)+T3(α)+T4(α)+T5(α), 
wher (T1 , T2 , T3 , T4 , T5) is solution of a star-system :    ★[a; b; c; 
d; e; α] = α. 
 
2.4. Star-Matrix: 
The star-system with α coefficient [1] can be written in matrix form  
M★T = Cα  

Where   

M★ =( 
 1 1 0 0 00 1 1 0 00 0 1 1 00 0 0 1 11 0 0 0 1) 

 
, 

vector T = (T1; T2; T3; T4; T5) and  

Cα =( 
 α − a − cα − b − dα − c − eα − a − dα − b − e) 

 
 

M★ or MStaris called the star-Matrix of the star-system with α 
coefficient (★[a; b; c; d; e; α] = α). 
  

M★ a matrix is said to be of dimension 5×5. A value called the 

determinant of M★, that we denote by |M★| or |MStaris|, corresponds 

to square matrix M★.                  

Consequently, the determinant of M★ is | M★| = 2. 

 
2.5. Set-Star:  
The set-star is constructed from the solution set of linear star-

system with α coefficient (★[a; b; c; d; e; α] = α). The Set-star will 

be noted by S★. 

 
2.6. Star-System equivalent: 
Equivalent Star-Systems [1] are those systems having exactly 
same solution, i.e. Two star-systems are equivalent if solution of 
on star-system is the solution of other, and vice-versa. 
 
2.7. Parametrized Curves: 
A parametrized differentiable curve is simply a specific subset of 
R5 with which certain aspects of differntial calculus can be applied. 
 
Definition 2 : A parametrized differentiable curve is a 
differentiable map α : I R5 of an open interval I = (a; b) of the 
real line R in to R5. 
 
2.8. Regular Curves: 
A parametrized differentiable curve α : I R5, We call any 
point that satisfies α’(t) = 0 a singular point and we will ristrict our 
study to curves without singular points. 
 
Definition 3 : A parametrized differentiable curve is a 

differentiable α : I R5 is said to be regular if α’(t) ≠ 0 for all t ∈ I 
(see [6],[7]). 
 
2.9. Parametric Arclength: 
Generalized, a parametric arclength starts with a parametric curve 
in R5. This is given by some parametric equations T1(t); T2(t); T3(t); 
T4(t); T5(t), where the parameter t ranges over some given interval. 
The following formula computes the length of the arc between two 
points a, b. 
 

Lemma 1 : Consider a parametric curve (T1(t); T2(t); T3(t); T4(t); 

T5(t)), where t ∈ (a; b). The length of the arc traced by the curve 
(see [4], [5]), as t ranges overt (a; b) is 

L=∫ √(𝑇′1(𝑡))2 + (𝑇′2(𝑡))2 + (𝑇′3(𝑡))2 + (𝑇′4(𝑡))2 + (𝑇′5(𝑡))2𝑏𝑎 dt 

 
Thereafter we start with several examples with detailed solutions 
are presented.  

3. Orientation of a Star with Coefficient 
A and Matrix Multiplication 
 
3.1 Orientation of a Star  
In this section, We choose two directions of travel on this Star 

with α coefficient can be classified as negatively oriented 

(clockwise), positively oriented ( counterclock-wise). 
 

Where ★+ is a star oriented countreclockwise (positively 

oriented): 

 
In the first case, one obtains a new matrix noted M

★+, called the 

star-matrix directly. 

M
★+ = ( 

 𝑏 𝑎 𝑒 𝑑 𝑐𝑇1 𝑇5 𝑇4 𝑇3 𝑇2𝑇5 𝑇4 𝑇3 𝑇2 𝑇1𝑒 𝑑 𝑐 𝑏 𝑎𝑇4 𝑇3 𝑇2 𝑇1 𝑇5) 
 

 

We note ★- is a star oriented clockwise (negatively oriented): 

 
In the second case, one obtains a new matrix noted M

★-,  called 

the star-matrix indirectly. 

M
★- = ( 

 𝑏 𝑐 𝑑 𝑒 𝑎𝑇2 𝑇3 𝑇4 𝑇5 𝑇1𝑇3 𝑇4 𝑇5 𝑇1 𝑇2𝑒 𝑑 𝑐 𝑏 𝑎𝑇4 𝑇5 𝑇1 𝑇2 𝑇3) 
 

 

 
3.2. Image of a five prime numbers.  

Exeample 1. We consider the Star-System with α coefficient  

★[3, 7, 11, 13, 17; α] = α of Linear Equations, we can easily 

solve this using Star-Matrix M★.  



 
The star-systems of linear equation: 

{  
  T1 + T2 = α − 14T2 + T3 = α − 20T3 + T4 = α − 28T4 + T5 = α − 16T5 + T1 = α − 24 

The solution of the Star-system ★[3; 7; 11; 13; 17; α] = α is 

therefore T1 =
α2 -15, T2 =

α2 +1, T3 =
α2 -21, T4 =

α2 -7 and T5 =
α2 -9. 

So the overall solution is the star-set:  

S★ = {(
α2 -15 , 

α2 +1 , 
α2 -21 , 

α2 -7 , 
α2 -9),α∈R}. 

In a particular case if α =
α2 -15 + 

α2 +1 + 
α2 -21 + 

α2 -7 + 
α2 -9 Then  

 The Star-coefficient: α★ = 34. 

 The star-element is (2; 18;฀4; 10; 8).  

 
The star matrix directly 

 
and the star matrix indirectly 

 
The determinant [2] of a matrix M

★+ is denoted det(M
★+), after 

numerous calculations :  

det(M★+) = det(M★-) = 642464 = 25×17×1181, 
1181 is a prime number because it has only two distinct divisors: 1 
and itself (1181).  
 

The characteristic polynomial [3] of a matrix M
★+, noted P

★+ :  

P
★+ (Ⲗ)= -Ⲗ5 + 26Ⲗ4 + 472Ⲗ3 + 3748Ⲗ2 + 92704Ⲗ + 642464. 

The characteristic polynomial of a matrix M
★-, noted P

★- :  

P
★- (Ⲗ)= -Ⲗ5 + 14Ⲗ4 + 888Ⲗ3 + 9828Ⲗ2 + 65504Ⲗ + 642464. 

The following product was obtained from the two matices M
★+ and 

M
★- :  

M★+ ×Cα★ = M★-, 
 
 

 
Where 

 
Called the matrix multiplication or chaffar-matrix. These results 
verified: 

1) |Cα★  | = 1, 

2) t Cα★ = (Cα★)
-1

, 

3) M
★- × t Cα★ = M

★+
, 

So 

 
A Surprise Result 

 
Now we look at matrix M

★+ where one of the eigenvalues is 

repeated noted α+★1 We shall see that this. 
Eigenvalues:  

α+★1  = α+★2 = 2,49606814601474, α+★3 = 41,2085820470714,  

α+★4  = -8,91508947299477, α+★5 = -11,2856288661062  

from where  

P
★+ (Ⲗ)= -Ⲗ5 + 26Ⲗ4 + 472Ⲗ3 + 3748Ⲗ2 + 92704Ⲗ + 642464 

            = -(Ⲗ - α+★1)× (Ⲗ - α+★3)× (Ⲗ - α+★4)× (Ⲗ - α+★5). 

 
Investigate carefully the eigenvectors associated with the 

repeated eigenvalue α+★1  = α+★2 = 2,49606814601474 : 

V+★1  =( 
 397355942247−11696464883078771314309267337161100279731486034 ) 

 , 
 

V+★2  =( 
 7689609000−1510526654−13096593092458111677 ) 

 . 
The eigenvectors associated with the eigenvalue  

α+★3  = 41,2085820470714 : 

V+★3  =( 
 2273781993012036188180163323726602249385190515604512348) 

 . 
The eigenvectors associated with the eigenvalue  



α+★4  = -8,91508947299477 : 

V+★4  =( 
 354374696808−87613810200−537072656526−95530533341310400963 ) 

 . 
The eigenvectors associated with the eigenvalue  

α +★5  = -11,2856288661062  : 

V+★5  =( 
 370244424180−120109067901−1005791381610231740412760697820107500 ) 

 . 
The conclusion is that since M★+ is 5×5 and we can obtain five 

linearly independent eigenvectors then M★+ be diagonalized. 

M★+
= (P★+

)×( 
 α⍣1 0 0 0 00 α⍣2 0 0 00 0 α⍣3 0 00 0 0 α⍣4 00 0 0 0 α⍣5) 

 
×(P★+

)
-1 

 

The Eigenvalues of matrix M
★- :  

α-★1  = 0,12957478575019, α-★2  = 0,12957478575019,  

α-★3  = 41,8947762503062, α-★4  =14,0769629109033,  

α-★5  =14,0769629109033 

The eigenvectors associated with the repeated eigenvalue α-★1  = 

α-★2  = 0,12957478575019 : 

V-★1  =( 
 37116813506826536600101829170950−57560278737−41096493650) 

 , 
 

V-★2 =( 
 962115071533850050−112669810170312295 ) 

 . 
The eigenvectors associated with the eigenvalue  

α-★3  = 41,8947762503062 : 

V-★3  =( 
 30238555347002194340858325170461823317530738450492752321218746301) 

 . 
The eigenvectors associated with the eigenvalue  

α-★4  = α-★5  = -14:0769629109033  : 

V-★4  =( 
 5436549800−17910960432331472784049883595944787944995 ) 

 , 
 

V-★5  =( 
 14835181270−781571280−16381847301382412525 ) 

 . 
The conclusion is that since M★- is 5×5 and we can obtain five 

linearly independent eigenvectors then M★- be diagonalized. 

M★-
=(P★-

)×( 
 α⍣1 0 0 0 00 α⍣2 0 0 00 0 α⍣3 0 00 0 0 α⍣4 00 0 0 0 α⍣5) 

 
×(P★-

)
-1

 

On the other hand 

M★+
=( 
 1 0 0 0 02/7 1 0 0 08/7 23/25 1 0 017/7 4/5 215/176 1 010/7 −29/25 1/88 141/170 1) 

 
×

( 
 7 3 17 13 110 50/7 36/7 −54/7 104/70 0 −704/25 256/25 −606/250 0 0 −340/11 −527/880 0 0 0 1181/80) 

 
 

 

M
★⎯

=( 
 1 0 0 0 018/7 1 0 0 0−4/7 −57/113 1 0 013/7 12/113 −31/6 1 010/7 27/113 −155/51 431/1360 1) 

 
×( 
 7 11 13 17 30 −226/7 −164/7 −250/7 40/70 0 408/113 −712/113 1902/1130 0 0 −160/3 930 0 0 0 1181/80 ) 

 
 

 
3.3. Matrix multiplication and Star-function. 
As we will see in the next subsection, matrix multiplication exactly 
corresponds to the composition of the corresponding linear 
transformations. 

Exeample 1. Let α∈R, for all t∈R the star-system with α 

coefficient ★[t, 2t, 3t, 4t, 5t ; α] = α of linear equations, has 

a unique solution (
α2 – 4t , 

α2 , 
α2 – 6t , 

α2 – 2t , 
α2 – 3t). 

 
So the overall solution is the star-set:  

S★ = {(
α2 – 4t , 

α2 , 
α2 – 6t , 

α2 – 2t , 
α2 – 3t),α∈R}. 

In a particular case if α =
α2 – 4t + 

α2 + 
α2 – 6t + 

α2 – 2t + 
α2 – 3t Then  

 The Star-coefficient: α★ = 10t. 

 The star-element is (t, 5t, -t, 3t, 2t) , for all t∈R. 

 

  
 
 
In the special case t=3 

 The Constant "Chaff": α★= 30. 

 The Star-set : S★ = {(3, 15, -3, 9, 6)}. 

 



 
The star matrix directly 

 
The star matrix indirectly 

 
After numerous calculations :  

det(M★+) = det(M★-) = 303750 = 2×54×243, 
243 is a prime number.  
 

The characteristic polynomial [3] of a matrix M
★+, noted P

★+ :  

P
★+ (Ⲗ)= -Ⲗ5 + 39Ⲗ4 + 45Ⲗ3 - 4860Ⲗ2 - 48600Ⲗ + 303750. 

The characteristic polynomial of a matrix M
★-, noted P

★- :  

P
★- (Ⲗ)= -Ⲗ5 + 45Ⲗ4 - 225Ⲗ3 - 4590Ⲗ2 - 8100Ⲗ + 303750. 

The following product was obtained from the two matices M
★+ and 

M
★- :  

M★+ ×Cα★ = M★-, 
we get the following matrix : Called Chaffar-matrix 

Cα★= 

( 
   
 25 25 25 25 −35−3 25 25 25 2525 −35 25 25 2525 25 −35 25 2525 25 25 −35 25 ) 

   
 

 

 
It should be hard to believe that our complicated formula for matrix 
multiplication actually means something intuitive such as chaining 
two transformations together.  
 

Let f★+ : R5  R5 and C★+ : R5  R5 be linear transformations, 

and let M
★+ and Cα★ 

be their standard matrices, respectively, so 

M
★+ is an 5×5 matrix and Cα★ 

is an 5×5 matrix.  

 

Then f★+ o C★+ : R5  R5 is a linear transformation, and its 

standard matrix is the product M
★- 

.  

 
That is to say 

f★+ o C★+ = f★- . 
 
 
We have 

1) |Cα★  | = 1, 

2) t Cα★ = (Cα★)
-1

, 

3) M
★- × t Cα★ = M

★+
, 

 
A Surprise Result 

 

Eigenvalues of Matrix M★+:  

α+★1  = α+★2 =-8,63341670127017, α+★3 = 35,5216112793007,  

α+★4  = 4,56303152617058, α+★5 = 16,1821905970691,  

The eigenvectors associated with the repeated eigenvalue 

α+★1  = α+★2 =-8,63341670127017 : 

V+★1  =( 
 98344574847112013121600−25550692626−23158712890843946621216 ) 

 , 
 

V+★2  =( 
 792946375−796362144−5527029120789365352 ) 

 . 
The eigenvectors associated with the eigenvalue  

α+★3  = 35,5216112793007 : 

V+★3  =( 
 876472270685692417688314573935035140877293706740555864138720) 

 . 
The eigenvectors associated with the eigenvalue  

α+★4  =4,56303152617058 : 

V+★4  =( 
 6165513961284154510360010379739083−18801719040−80359270320) 

 . 
The eigenvectors associated with the eigenvalue  

α +★5  = 16,1821905970691  : 

V+★5  =( 
 4698063285928−526586743820015114855363992−41372779281−6681220825688) 

 . 
M★+ is 5×5 and we can obtain five linearly independent 

eigenvectors then M★+ be diagonalized. 

 

Eigenvalues of Matrix M★- 
:  

α-★1  = α-★2 = -6,82337727172845, α-★3 = 34,7324078557174,  

α-★4  = 16,2578297114104, α-★5 = 7,65651697632905,  

The eigenvectors associated with the repeated eigenvalue 

α-★1  = α-★2 = -6,82337727172845 : 



V-★1  =( 
 2998690570552013314954236180−2893303898420−404990751637401929286651501 ) 

 , 
 

V-★2  =( 
 432255005−144454440−5048497480266131202 ) 

 . 
The eigenvectors associated with the eigenvalue  

α-★3  = 34,7324078557174 : 

V-★3  =( 
 469945893258310960665501379583371002479217930612258658839280) 

 . 
The eigenvectors associated with the eigenvalue  

α-★4  = 16,2578297114104 : 

V-★4  =( 
 87087650364−277650466212356707497198146564990520−143243581381) 

 . 
The eigenvectors associated with the eigenvalue  

α -★5  = 7,65651697632905  : 

V-★5  =( 
 924275240−1812125436−5030544673−68423139409503960620 ) 

 . 
Same as previously, the matrix M★-  is 5×5 and we can obtain five 

linearly independent eigenvectors then M★- be diagonalized. 

 
More generally, 

For all t∈R the star-system ★[t, 2t, 3t, 4t, 5t ; 10t] = 10t has 

a unique solution (t, 5t,-t; 3t, 2t), the Star-coefficient α-★ = 10t and 

the star-function: t  (t; 5t;-t; 3t; 2t). 

 
The star matrix directly 

 
For all t∈R-{0}, det(M

★+(t))= 1250t5 

The characteristic polynomial [3] of a matrix M
★+, noted P

★+ :  

For all (t, Ⲗ)∈R-{0}×R, 

P
★+ (t,Ⲗ)= -Ⲗ5 + 13t×Ⲗ4 + 5t²×Ⲗ3 - 180t3×Ⲗ2 - 600t4×Ⲗ +1250t5. 

M★+
(t)=( 

 1 0 0 0 02 1 0 0 03 16/7 1 0 04 17/7 11/19 1 0−1 −10/7 −11/19 −1/20 1) 
 

×

( 
 𝑡 5𝑡 4𝑡 3𝑡 2𝑡0 −7𝑡 −9𝑡 −𝑡 −3𝑡0 0 −95𝑡/7 −40𝑡/7 20𝑡/70 0 0 −100/19 50𝑡/190 0 0 0 5𝑡/2 ) 

 
 

We get the star matrix indirectly 

 

For all t∈R-{0}, det(M
★-

(t))= 1250t5 

The characteristic polynomial [3] of a matrix M
★-

, noted P
★- :  

For all (t, Ⲗ)∈R-{0}×R, 

P
★- (t,Ⲗ)= -Ⲗ5 + 15t×Ⲗ4 - 25t²×Ⲗ3 - 170t3×Ⲗ2 - 100t4×Ⲗ +1250t5. 

M★⎯
(t)=( 

 1 0 0 0 01 1 0 0 05 −11/3 1 0 03 −2/3 1/4 1 0−1 5/3 −7/16 9/20 1) 
 

×

( 
 𝑡 2𝑡 3𝑡 4𝑡 5𝑡0 3𝑡 −4𝑡 −𝑡 −3𝑡0 0 −80𝑡/3 −65𝑡/3 −35𝑡0 0 0 −25/4 −25𝑡/40 0 0 0 5𝑡/2 ) 

 
 

The following product was obtained from the two matices M
★+(t) 

and M
★-(t) :  

M★+(t)×Cα★ = M★-(t),  

Cha_ar-Matrix Cα★ 
is a matrix independent of t 

Cα★= 

( 
   
 25 25 25 25 −35−3 25 25 25 2525 −35 25 25 2525 25 −35 25 2525 25 25 −35 25 ) 

   
 

 

The following results are obtained: 

1) |Cα★  | = 1, 

2) t Cα★ = (Cα★)
-1

, 

3) M
★-

(t) × t Cα★ = M
★+

(t), 

The relationship between two matrices M
★-(t) and M

★+(t) is a 

convenient method of visualizing relationships quickly and 
definitively. One way of looking at it is that the result of matrix 
multiplication is important in research afterwards. 
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