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Abstract

In the present paper we define an oriented Star %, with o coefficient [1] and we further develop the procedure for finding eigenvalues and eigenvectors for an (5 x 5) Star-
matrix directly or (5 x 5) Star-matrix indirectly. we give an overview of the methods to compute matrix-multiplication of a Star %, (generally square 5 x 5) with particular

emphasis on the oriented matrix.
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1.Introduction

In this article, we propose a matrix representation of an oriented star
¥, with o coefficient [1] and define two directions of orientation. It
is therefore possible to orient a star ¥, with o coefficient in two
different ways dlrectly and indirectly (plcture 1).

S
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A star with o coefficient is composed of five numbers outside a, b,
¢, d, e and five numbers inside T, , T, , Ts, T4, Ts These last five
numbers are written in the form of 5-tuple (T;, T, , Tz, T4, Ts)
(Figure 2).
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In addition to having the sum o in each line.

The scalars o are called the star coefficient if o is a solution of
equation =T, (o) +T, (&) +T5 (o) +T4 (o) +T5 () (Noted by
o4 ), a vector (Ty, T,, T3, T4, Ts) is called a solution vector of
this Star-System with o coefficient in five unknowns.

The present paper is organized as follows: In Section 2, we
present some preliminary results and notations that will be useful
in the sequel. In Section 3, we will use the convention here that the
star %, has a positive or a negative (picture 1) orientation besides
orientation of a star % ,. Another way to think of a positive
orientation is that as we traverse the path following the positive
orientation the star %, must always be on the left (that is, one may
also speak of orientation of a (5 x 5) matrix, polynomial of degree
5, etc.). We present some examples of Star-matrix directly or
indirectly.

2, Some Basic Definitions and Notations
In this section, we introduce some notations and star-system with
coefficient o defined [1].
2.1. A star-system with a coefficient:
Dfinition 1: Leta, b, ¢, d, e and o be real numbers, and let T+, T2,
Ts, T4, Tsbe unknowns (also called variables or indeterminates).
Then a system of the form

Tl+T2=a—a-—c

T24+T3=a—-—b—-d

T3+ T4d=a—c—e

T4+T5=a—a—d

T5+Tl=a—b—e

is called a star-system with o coefficient in five unknowns. We

have also noted *[a; b; ¢; d; e; o] = . The scalars a, b, ¢, d, e
are called the coefficients of the unknowns, and o is called the
constant "Chaff" of the star-system in five unknowns.

A vector (T1, T2, T3, T4, Ts) in RS is called a star-solution vector
of this star-system if and only if %{[a; b; ¢; d; e; o] = «. if and only
if %[a; b; c; d; e; o] =

The solution of a Star-system is the set of values for T1, T2, T3,
T4 and Ts that satisfies five equations simultaneously.

2.2. A star-element:
A star-element [1] is a term of the five-tuple (T1, T2, T3, T4, Ts)
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solution of a star-system *[a; b; c; d; e; a] = a, wher (T1, T2, T3,
Ta, Ts)in RS,

2.3. Star-Coefficient or Constant "Chaff":

The star-Coefficient or Constant "Chaff" [1] is also noted by a*
and is a solution of equation : a=T+(a)+Tz(a)+Ts(a)+T4(a)+Ts(a),
wher (T1, T2, Ts, T4, Ts) is solution of a star-system :  %{a; b; c;
d;e;a]=

2.4. Star-Matrix:
The star-system with a coefficient [1] can be written in matrix form

M*T =Ca
Where
1 1 0 0 O
0 1.1 0 O
Me=lO 0 1 1 0]
0 0 0 1 1
1 0 0 0 1
vector T = (T1; Tz; Ts; Ta; Ts) and
a—a—c
a—b-—-d
Ce=l a—c—e
a—a—d
a—b—e

M, or Mstaris called the star-Matrix of the star-system with a
coefficient (*[a; b; c; d; e; a] = a).

M, a matrix is said to be of dimension 5x5. A value called the

determinant of M, that we denote by |[M| or [Mstaris|, corresponds

to square matrix M.
Consequently, the determinant of My is | M| = 2.

2.5. Set-Star:

The set-star is constructed from the solution set of linear star-
system with a coefficient (*[a; b; c; d; e; a] = a). The Set-star will
be noted by S.

2.6. Star-System equivalent:

Equivalent Star-Systems [1] are those systems having exactly
same solution, i.e. Two star-systems are equivalent if solution of
on star-system is the solution of other, and vice-versa.

2.7. Parametrized Curves:
A parametrized differentiable curve is simply a specific subset of

RS with which certain aspects of differntial calculus can be applied.

Definition 2 : A parametrized differentiable curve is a
differentiable map a : | >R of an open interval | = (a; b) of the
real line Rin to RS,

2.8. Regular Curves:

A parametrized differentiable curve a: | >R5, We call any

point that satisfies o’'(t) = 0 a singular point and we will ristrict our
study to curves without singular points.

Definition 3 : A parametrized differentiable curve is a
differentiable a : | >R5 is said to be regular if a'(t) # 0 for all t € |
(see [6],[7]).

2.9. Parametric Arclength:
Generalized, a parametric arclength starts with a parametric curve

in RS. This is given by some parametric equations T1(t); T2(t); Ta(t);
Ta(t); Ts(t), where the parameter t ranges over some given interval.

The following formula computes the length of the arc between two
points a, b.

Lemma 1 : Consider a parametric curve (T(t); Ta(t); Ts(t); Ta(t);
Ts(t)), where t € (a; b). The length of the arc traced by the curve
(see [4], [B]), as t ranges overt (a; b) is

L=f 102 + (T'2())? + (T3(0)? + (T4()” + (T'5(2) %t

Thereafter we start with several examples with detailed solutions
are presented.

3. Orientation of a Star with Coefficient
A and Matrix Multiplication

3.10rientation of a Star

In this section, We choose two directions of travel on this Star
with o coefficient can be classified as negatively oriented
(clockwise), positively oriented ( counterclock-wise).

Where %+ is a star oriented countreclockwise (positively
onented

/
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In the first case, one obtains a new matrix noted M**, called the
star-matrix directly.

(Figure 3)

b a e d c
T1 T5 T4 T3 T2
M*=|T5 T4 T3 T2 T1
e d ¢ b a
T4 T3 T2 T1 T5
We note *-is a star orlented clockW|se (negatively oriented):

N

In the second case, one obtains a new matrlx noted M*- called
the star-matrix indirectly.
b c d e a
T2 T3 T4 T5 T1
M“=[T3 T4 T5 T1 T2
e d c b a
T4 T5 T1 T2 T3

3.2. Image of a five prime numbers.
Exeample 1. We consider the Star-System with o coefficient

*[3,7,11,13,17; o] = o of Linear Equations, we can easily
solve this using Star-Matrix M.



(Figure 5)
<>The star-systems of linear equation:

T1+T2=a-14

T2+ T3=a-20

T3+ T4 =a-28

T4+ T5=a—-16

T5+Tl=a—24
The solution of the Star-system *[3; 7; 11;13; 17; o]= ais
therefore T1 =2 -15, T2 =2 +1, T3 =2 -21, Ta = -7 and Ts == -9,
So the overall solution is the star-set:
Sw={C-15,2+1,7-21,7-7,~-9)a€R}.

2 2

Ina partlcular case |f « =§ 15+ % +1+ g 21+ g 7+ % -9 Then
e The Star-coefficient: o* = 34.

o The star element is (2; 18;04; 10; 8).
a=34

The star matrix directly )
3 17 13 11)

7
2 8 10 —4 18
Myt=|8 10 -4 18 2
17 13 11 7 3

10 -4 18 2 8
and the star matrix indirectly

7 11 18 17 .3
I8 —4 10 8 2
My =|-4 10 8 2 18
13 17 8 7 1
10 8 2 18 —4

The determinant [2] of a matrix M** is denoted det(M**), after
numerous calculations :

det(M*+) = det(M*-) = 642464 = 25x17x1181,

1181 is a prime number because it has only two distinct divisors: 1

and itself (1181).

The characteristic polynomial [3] of a matrix M*+, noted P**
P*+(N)= -AS + 264 + 4723 + 37482 + 92704 + 642464,

The characteristic polynomial of a matrix M*-, noted P*-:
P*-(A)= -AS + 1474 + 888A3 + 9828A2 + 65504 + 642464,

The following product was obtained from the two matices M*+and

M*-:
*. X MTX-
M™* xCo™ = M™,

(Figure 6

Where
341 458 —694 474 602
R
e | WM OWOI
B T
g g S 1 -

1181 1181 1181 1181 1181

Called the matrix multiplication or chaffar-matrix. These results
verified:
1) e =1,
2) tCer=(CcM)
3) M*’X‘C“*=M*+,
So

341 458 —694 474 602

602 341 458 —694 474

474 602 341 458 —694| = 1181°.

—694 474 602 341 458

458 —694 474 602 341

A Surprise Result

1181=] 341 158 | —694 1 474 | 602
1181=} 602 | 341 158 | —694] 474

1181=] 474 | 602 | 341 458 | —694
1181=} =694 | 474 602 341 458
1181=1 458 | —694] 474 | 602 | 341

e 000w wn
1181 1181 1181 1181 1181

. * . .
Now we look at matrix M™* where one of the eigenvalues is

repeated noted a+*1We shall see that this.
Eigenvalues:

o™ = ot*2= 2, 49606814601474, or*3 = 41,2085820470714,

o™ = -8,91508947299477, or**s = -11,2856288661062

from where

P*+(A)=-A5 + 264 + 472A3 + 3748\2 + 92704 + 642464
=o(A - o N)x (A - o *3)x (A - oM )x (A - ot ™).

Investigate carefully the eigenvectors associated with the
repeated eigenvalue o**1 = o**2= 2,49606814601474 :
397355942247
—1169646488307
Akl 87713143092 )
67337161100
279731486034

768960900
0
v*2=z| —1510526654
—1309659309

2458111677
The eigenvectors associated with the eigenvalue

ot*3 = 41,2085820470714 :
22737819930
12036188180
v*3=| 16332372660
22493851905

15604512348
The eigenvectors associated with the eigenvalue



ot*4 = -8,91508947299477 :
354374696808
—87613810200
v* = —537072656526
—95530533
341310400963

The eigenvectors associated with the eigenvalue
o %5 =-11,2856288661062 :
370244424180
—120109067901
v+*5=| —1005791381610
231740412760
697820107500
The conclusion is that since M**is 5x5 and we can obtain five
linearly independent eigenvectors then M** be diagonalized.
axl 0 0 0 0
0 o2 0 0 0
0 0 a¥3 0 0 [x(P*’
0 0 0 ox4 0
0 0 0 0 ax5

M*+ — (P*+) x

The Eigenvalues of matrix M*- :
o*1'=0,12957478575019, o *2 = 0,12957478575019,
o3 = 41,8947762503062, o *4 =14,0769629109033,
or*5 =14,0769629109033
The eigenvectors associated with the repeated eigenvalue o™*! =
o*2=0,12957478575019 :
3711681350
6826536600
v*1=| 101829170950 |,
—57560278737
—41096493650

96211507
153385005
V-*2: 0
—112669810
170312295

The eigenvectors associated with the eigenvalue

o3 = 41,8947762503062 :
3023855534700
2194340858325

*3z[ 1704618233175
3073845049275

2321218746301
The eigenvectors associated with the eigenvalue

o* = o™ = -14:0769629109033 :
5436549800
—17910960432
v*=| 3314727840 |,
4988359594
4787944995

1483518127
0
v*=[ —781571280
—1638184730
1382412525
The conclusion is that since M*-is 5x5 and we can obtain five

V

linearly independent eigenvectors then M*-be diagonalized.
axl 0 0 0 0
0 ax2 0 0 0

M*=P*)x| 0 0 ax3 0 0 |x(P*)’
0 0 0 ax4 0
0 0 0 0 ax5
On the other hand
1 0 0 0 0
2/7 1 0 0 0
M**=| 8/7 23/25 1 0 0 [x
17/7  4/5  215/176 1 0
10/7 —-29/25 1/88 141/170 1
7 3 17 13
0 50/7 36/7 —54/7 104/7
0 0 —704/25 256/25 —606/25
0 0 0 —340/11 —527/88
0 0 0 1181/80
1 0 0 0 0
18/7 1 0 0 0
M*=| —4/7 —57/113 1 0 0
13/7 12/113  —-31/6 1 0
10/7 27/113 —155/51 431/1360 1
7 11 13 17 3
0 —226/7 —164/7 —250/7 40/7
x| 0 0 408/113 —712/113 1902/113
0 0 0 —-160/3 93
0 0 0 0 1181/80

3.3. Matrix multiplication and Star-function.

As we will see in the next subsection, matrix multiplication exactly
corresponds to the composition of the corresponding linear
transformations.

Exeample 1. Let o€R, for all teR the star-system with o
coefficient *[t, 2t, 3t, 4t, 5t; o] = o of linear equations, has

a unique solution (-4t >, >~ 6t, ~-2t, =~ 3f)

So the overall solution is the star-set:
_ o o o o o
S* = {(E_4t , E,E—6t,5—2t,5—3t),GER}.
In a particular case if =g—4t+%+g—6t+ %—Zt +%—3tThen

e The Star-coefficient: o* = 10t.
e The star-element s (t, 5t, -t, 3t, 2t) , for all teR.

a =10t

(Figure 7)

In the special case t=3
e The Constant "Chaff": a*= 30.
e The Star-set: Sy ={(3, 15,-3, 9, 6)}.
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Directly

Y (Figure 8)
The star matrix dlrectly
3 15 12 9 6
6 9 —3 15 3
Mff=|9 -3 15 3 6
120 9 6 3 15
-3 15 3 6 9
The star matrix indirectly
3 6 9 12 15
3 15 -3 9 6
Myf-=|15 -3 9 6 3
9 12 15 3 6
-3 9 6 3 15

After numerous calculations :
det(M*+) = det(M*-) = 303750 = 2x5x243,
243 is a prime number.

The characteristic polynomial [3] of a matrix M**, noted P**
P*+(A)= -A5 + 39A4 + 453 - 48602 - 48600A + 303750.
The characteristic polynomial of a matrix M*-, noted P*-:
P*-(A)= -AS + 45)\4 - 2253 - 45902 - 8100A + 303750.
The following product was obtained from the two matices M*+and
M*-:

M** xC* = M*
we get the following matrix : Called Chaffar-matrix

2 2 2 2 -3

5 5 5 5 5

2 2 2 2

-3 £ =z =z Z

5 5 5 5

cro| 2 3oz oz oz

5 5 5 5 5

2 2 -3 2 2

5 5 5 5 5

2 2 2 -3 2

5 5 5 5 5

It should be hard to believe that our complicated formula for matrix
multiplication actually means something intuitive such as chaining
two transformations together.

Let fx+: R® 2 R5and Cy+: R® = RS be linear transformations,
and let M*+and C** be their standard matrices, respectively, so
M*+ s an 5x5 matrix and C** is an 5x5 matrix.

Then fx+0 Cy+ : R® = R¥is a linear transformation, and its
standard matrix is the product M*”

That is to say
f*-o- (o] C*+ = f*_ .

We have
1) 1™ |=1,
2) tC‘x* - (Ca*)—1,
3) M* xtCa* - M*+,

2 2 2 2 -3
-3 2 2 2 2
2 <8 2 2 3|=8
2 2 =3 2 2
2 2 2 -3 2
A Surprise Result
b=l 2 2 2 2 -3
S==1 2172172 17
5=] 2 -3 2 2 2
5= 2 2 -3 2 2
g=] 2 | 2 2 |3 ]2
5’/ T
5 5 5 5 5

Eigenvalues of Matrix M**:
o™ = o *2--863341670127017 o**3 = 35,5216112793007,
ot = 4,56303152617058, or**5 = 16,1821905970691,
The eigenvectors associated with the repeated eigenvalue
o™ = o *2=-8,63341670127017 :
98344574847
112013121600
v*1=[ —25550692626 |,
—231587128908
43946621216

792946375

—796362144

v*2=| —552702912
0

789365352
The eigenvectors associated with the eigenvalue

o™ = 35,5216112793007 :
876472270685
692417688314
v+*3=| 573935035140
877293706740

555864138720
The eigenvectors associated with the eigenvalue

o™ =4,56303152617058 :
616551396128
41545103600
v*=| 10379739083
—18801719040

—80359270320
The eigenvectors associated with the eigenvalue

o **5 = 16,1821905970691 :
4698063285928
—5265867438200
v+*s=[ 15114855363992
—41372779281
—6681220825688
M*+is 5x5 and we can obtain five linearly independent
eigenvectors then M** be diagonalized.

Eigenvalues of Matrix M*”
o™ = o *2=-6,82337727172845, o *3 = 34,7324078557174,

or*4 = 16,2578297114104, or*5 = 7,65651697632905,
The eigenvectors associated with the repeated eigenvalue
o™ = o *2= 6,82337727172845 :



29986905705520
13314954236180
v*=| —2893303898420 |,
—40499075163740
1929286651501

432255005

—144454440

=| —504849748
0

266131202
The eigenvectors associated with the eigenvalue

o3 = 34,7324078557174 :
469945893258
310960665501
v*3=[ 379583371002
479217930612

258658839280
The eigenvectors associated with the eigenvalue

o4 = 16,2578297114104 :
87087650364
—277650466212
v* = 356707497198
146564990520
—143243581381

The eigenvectors associated with the eigenvalue
o5 = 7,65651697632905 :
924275240
—1812125436
v*5=| —5030544673
—6842313940
9503960620

Same as previously, the matrix M*~ is 5x5 and we can obtain five
linearly independent eigenvectors then M*"be diagonalized.

v-*2

More generally,
For all teR the star-system {t, 2t, 3t, 4t, 5t ; 10t]— 10t has

a unique solution (t, 5t -t; 3t, 21t), the Star-coefficient o™ = 10t and

the star- functlon t% (t; Bt-t; 3t; 21).
a =10t

/k/ L k Ny

The star matrix directly
t ot 4f: 3t 2

(Figure 9)

% 3t —t 5t %
MItt)=|3t —t 56 t 2t
4 3t 2t t 5t
—t 5 t 2t 3

For all teR-{0}, det(M**(t))= 1250t5
The characteristic polynomial [3] of a matrix M*+, noted P*+
Forall (t, A)eR-{0}xR,

P*+ (t,A)= -AS + 13txA% + 52 A3 - 1803 A2 - B00t4xA +1250t5.

1 0 0 0 0
2 1 0 (N
M**M)=| 3 16/7 1 0 0]x

4 17/7  11/19 1 0
-1 -10/7 -11/19 -1/20 1

t 5t 4t 3t 2t

0 -7t -9t —t -3t

0 0 —95t/7 —40t/7 20t/7

0 0 0 -100/19 50t/19

0 0 0 0 5t/2

We get the star matrix indirectly
t 2t 3t 4t 5t
5t —t 3t 2t
My¥-(t)=|5 -t 3t 2t t
3t At St b 2
—t 3t 2t t bt
For all teR-{0}, det(M*"(t))= 125015
The characteristic polynomial [3] of a matrix M*", noted P*":
Forall (t, A)eR-{0}xR,
P*" (t,A)= -A8 + 15tx A4 - 25t A3 - 1703 A2 - 100t4x A +125015,

1 0 0 0 0
1 1 0 0 0
M*)=| 5 -11/3 1 0 0|x

3 -2/3  1/4 1 0
-1 5/3 -7/16 9/20 1

t 2t 3t 4t 5t

0 3t —4t —t -3t

0 0 -80t/3 —65t/3 —35t

0 0 0 —25/4 —25t/4

0 0 0 0 5t/2

The following product was obtained from the two matices M**(t)
and M*-(t):
M**(t)xC-* = M),

Cha_ar-Matrix C™* is a matrix independent of t

2 2 2 2 -3

5 5 5 5 5

2 2 2 2

-3 £ =z =z =

5 5 5 5

coxo | 2 32z 2
5 5 5 5 5

2 2 -3 2 2

5 5 5 5 5

2 2 2 -3 2

5 5 5 5 5

The following results are obtained:

1) Ic™ |=1,

2) tCa* = (Ca*)'1’

3) M) xtCar=M** (1),
The relationship between two matrices M*-(t) and M**(t) is a
convenient method of visualizing relationships quickly and
definitively. One way of looking at it is that the result of matrix
multiplication is important in research afterwards.
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