
Open AccessISSN: 2090-4886

International Journal of
Sensor Networks and Data Communications

Review Article
Volume 10:7, 2021

Function-As-A-Service Acceleration for IoT Applications
on Hybrid Cloud

Abstract
Serverless computing is an emerging event-driven programming model that accelerates the development and deployment of scalable web services on cloud
computing systems. Though widely integrated with the public cloud, serverless computing use is nascent for edge-based, IoT deployments.

In this work, we present STOIC (Serverless Tele Operable Hybrid Cloud), an IoT application deployment and offloading system that extends the serverless model
in three ways. First, STOIC adopts a dynamic feedback control mechanism to precisely predict latency and dispatch workloads uniformly across edge and cloud
systems using a distributed serverless framework. Second, STOIC leverages hardware acceleration (e.g. GPU resources) for serverless function execution when
available from the underlying cloud system. Third, STOIC can be configured in multiple ways to overcome deployment variability associated with public cloud use.
We overview the design and implementation of STOIC and empirically evaluate it using real-world machine learning applications and multi-tier IoT deployments
(edge and cloud). Specifically, we show that STOIC can be used for training image processing workloads (for object recognition) – once thought too resource-
intensive for edge deployments. We find that STOIC reduces overall execution time (response latency) and achieves placement accuracy that ranges from 92%
to 97%.

Michael Zhang*, Chandra Krintz and Rich Wolski
Department of Computer Science, University of California, Santa Barbara, United States

*Address for Correspondence: Michael Zhang, Department of Computer Science,
University of California, Santa Barbara, United States; E-mail: lebo@cs.ucsb.edu

Copyright: © 2021 Zhang M, et al. This is an open-access article distributed
under the terms of the creative commons attribution license which permits
unrestricted use, distribution and reproduction in any medium, provided the
original author and source are credited.

Received: August 04, 2021; Accepted: August 18, 2021; Published: August 25,
2021

Keywords

Serverless ● IoT ● Scheduling ● Cloud functions ● GPU

Introduction

 Serverless computing (also known as Functions-as-a-Service (FaaS))
is a popular cloud service for hosting and automatically scaling applications
[1-3]. Originally designed for web services, serverless computing defines
a simple, event-driven programming model and cloud platform with which
developers write simple, short-lived functions that are invoked by the platform
in response to specific system-wide events [4, 5]. Server less platforms
automatically configure and provision isolated execution environments on-
demand and users pay only for the resources their functions use during
execution.

Moreover, serverless computing has been extended to work at the
“edge” of the network to reduce the response latency and bandwidth
associated with public cloud use by data-driven applications [6-8]. Doing
so is challenging, however, because computing and storage resources are
scarce at the edge, whereas public/private clouds may offer specialized
hardware that can significantly speed up machine learning applications.

In this work, we investigate the use of serverless computing across
the edge and public cloud deployments. To leverage hardware acceleration
and distributed (multi-cloud) scheduling within a server less architecture,
we have developed STOIC, a framework for distributing and executing
analytics applications across multi-tier IoT (sensing-edge-cloud) settings.
Specifically, STOIC optimizes the end-to-end process of packaging,
transferring, scheduling, executing, and result retrieval for machine learning
applications in these settings.

STOIC

Architecture

It shows the distributed components of STOIC (Figure 1). At the edge,
STOIC gathers application input data, determines whether the lower
application latency will be achieved by processing the data on the edge or in
the cloud, and then actuates the application’s computation using the “best”
choice. The public cloud component manages whatever cloud resources
are needed to receive the data from the edge, trigger the computation, and
return the results to the edge. The edge and cloud systems mirror each
other, running Kubernetes overlaid with Kubeless, to provide a uniform
infrastructure for the framework [9-11].

Our system design is motivated by a need to classify wildlife images
in a location where it is possible to site a relatively powerful edge system
but where network connectivity is poor. We use STOIC for processing
images from multiple, motion-triggered camera traps (sensors) deployed to
Sedgwick Natural Reserve currently used to study ecological land use [12].

The Edge Controller is a server that communicates wirelessly with the
sensors and triggers analysis and computation upon their arrival. When a
camera trap detects motion, it takes photos and persists the images in flash
storage buffer, where human experts would label images for training tasks.
Periodically, sensors transfer saved photos to the edge controller. STOIC

Figure 1. The STOIC architecture.

J Sens Netw Data Commun, Volume 10: 7, 2021Zhang M, et al.

Page 2 of 4

runs on the edge controller and its executions are triggered by the arrival of
image batches. It consists of three major components:

• The cloud scheduler predicts the total latency based on historical
measurements for each available runtime.

• The requester takes as input the runtime and cloud predicted by the
scheduler to have the least latency. The requester also saves the image
package in an object storage service running in this cloud. It then triggers
a serverless function (running in a Kubernetes pod) via a HTTP request to
process the images.

• The inquisitor monitors public cloud deployment time. To enable
this, it periodically in the background deploys each runtime and records
the deployment times in a database. We use the inquisitor to establish
the historical time series for predicting the deployment latency of remote
runtimes.

Public/private cloud: To investigate the use of the server less
architecture with hardware acceleration, we employ a shared, multi-
university, GPU cloud, called Nautilus, as our remote cloud system [13]. The
STOIC cloud/GPU runtimes use Kubernetes and Kubeless for serverless
function execution and Ceph for object storage on the public cloud.

A major challenge that we face with such deployments is hardware
heterogeneity and performance variability. This heterogeneity impacts
application execution time in three significant ways. First, different CPU clock
rates affect the transfer of datasets from the main memory to GPU memory.
Second, there is significant latency and performance variability between
runtimes and the storage service (which hold the datasets and models).
Third, the multi-tenancy of nodes allows other jobs to share computational
resources with our applications of interest at runtime. These three factors
negatively make it difficult for users to determine which runtime to use and
when to execute locally. With STOIC, we address these challenges via a
novel scheduling system that adapts to this variability.

A major challenge that we face with such deployments is hardware
heterogeneity and performance variability. This heterogeneity impacts
application execution time in three significant ways. First, different CPU clock
rates affect the transfer of datasets from the main memory to GPU memory.
Second, there is significant latency and performance variability between
runtimes and the storage service (which hold the datasets and models).
Third, the multi-tenancy of nodes allows other jobs to share computational
resources with our applications of interest at runtime. These three factors
negatively make it difficult for users to determine which runtime to use and
when to execute locally. With STOIC, we address these challenges via a
novel scheduling system that adapts to this variability.

Runtime scenarios: To schedule machine learning tasks across hybrid
cloud deployments, we define four runtime scenarios: (A) Edge-A VM
instance on the edge cloud with AVX2 support [14]. (B) CPU-A Kubernetes
pod on Nautilus containing a single CPU with AVX2 support [14]. (C)
GPU1-A Kubernetes pod on Nautilus containing a single GPU. (D) GPU2-A
Kubernetes pod on Nautilus containing two GPUs. STOIC considers each of
these deployment options as part of its scheduling decisions.

Execution time estimation: The total response time (Ts) includes data
transfer define total response time (Ts) as Ts=Tt+Td+Tp.

Transfer time (Tt): Measures the time (Tt), runtime deployment
time (Td), and the corresponding processing time (Tp). We time spent in
transmitting a compressed batch of images from the edge controller to edge
cloud and public cloud.

Runtime deployment time (Td): Measures the time Nautilus uses to
deploy the requested kubeless function. Since the scarcity of computation,
it is common that multi-GPU runtime takes longer to deploy than single-
GPU and CPU runtimes. Note that, for edge runtime, the deployment time
zeroes out since STOIC executes the task locally in the edge cloud. To
accurately predict deployment time, we analyse deployment times as a time
series using three methods:

• Auto-regression modelling,

• Average sliding window, and

• Median sliding window.

It shows representative analytics for GPU1 deployment time, in which
MAE oscillates as window size varies (Figure 2). We observe that the median
sliding window reaches a lower minimum MAE than the average sliding
window at optimal window size. As listed in, all three runtimes achieve the
lowest minimum MAE using the median sliding window (Table 1). Therefore,
STOIC adopts this methodology for deployment time prediction.

Modeling Runtime Optimal window size Minimum MAE
Auto Reg CPU 15 8.977
Auto Reg GPU1 15 9.605
Auto Reg GPU2 15 17.918
Avg. SW CPU 33 7.714
Avg. SW GPU1 31 8.006
Avg. SW GPU2 91 16.52
Med. SW CPU 13 5.96
Med. SW GPU1 31 5.668
Med. SW GPU2 27 14.48

Table 1. Mean Absolute Error of three time series modelling methods for runtime
deployment time: auto-regression (Auto Reg), average sliding window (Avg. SW),
and median sliding window (Med. SW). The median sliding window achieves the
lowest minimum MAE at optimal window size (that with the lease MAE) for all three
runtimes.

Processing time (Tp): Is the execution time of a specific machine
learning task and the target of task scheduling across the hybrid cloud.
STOIC formulates a Bayesian Ridge Regression on execution time histories
of STOIC jobs, and uses it to predict processing time relative to input (image
batch) size [15]. We also augment regression using a random sample
consensus (RANSAC) technique, which iteratively removes outliers from
the regression [16].

Adaptability: Depicted in, we observe that actual total latency varies
significantly and predicted total latency has a non-negligible difference
from the actual total latency at the beginning of the experiment (Figure 3).
However, over time, as STOIC learns the various latencies of the system,
the difference is significantly reduced. In, we report the percentage mean
absolute error (PMAE), which we compute as the MAE divided by mean
latency (Table 2). The decrease in all three PMAE values in the second half
of the execution traces also show STOIC’s adaptability.

 Deployment Td Processing Tp Total Ts
First half 42.70% 11.20% 15.80%
Second half 29.20% 5.30% 9.20%

Table 2. The percentage mean absolute error (PMAE) of deployment, processing,
and total latency.

Figure 2. The Mean Absolute Error (MAE) of deployment time for the GPU1
runtime. The x-axis is the window (history) size. The left subplot is MAE when
STOIC uses the average sliding window; the right subplot is MAE when STOIC
uses the median sliding window.

J Sens Netw Data Commun, Volume 10: 7, 2021Zhang M, et al.

Page 3 of 4

Workflow

STOIC considers two workflows upon receiving an image batch: selector
mode and duplicator mode. Both are depicted in Figure 4. In selector mode,
STOIC selects the runtime with the shortest estimated response time and
deploys it locally (Edge) or remotely (non-Edge). To pivot STOIC to variable
deployment time, we consider a second workflow called duplicator mode,
in which the scheduler selects a public cloud runtime, the requester also
deploys the job on the edge cloud. It then terminates edge cloud execution
if the remaining time at edge cloud is longer than the expected processing
time (Tp) at the GPU runtime once deployment completes. This “lagging
decision” mechanism reduces the variability of deployment time in the
prediction. As a result, STOIC must only consider processing time, which is
more accurately predicted, to deploy tasks.

Evaluation

 Experiment setup

The image processing application that we use as a benchmark
classifies animal images from a wildlife monitoring system called “Where’s
The Bear” (WTB) [17]. “Where’s The Bear” is an end-to-end distributed data
acquisition and analytics system that automatically analyses camera trap
images collected by cameras sited at the Sedgwick Natural Reserve in
Santa Barbara County, California [12]. Our deployment includes an edge
cloud located near the cameras where it acquires the image data. The edge
cloud is connected via a slow (microwave) link to a private cloud located
at a research facility located approximately 50 miles from the site. In this
work, we explore using the Nautilus distributed GPU cloud as the public
cloud, in conjunction with the edge cloud to optimize image classification
on a Convolutional Neural Network (CNN) implemented by Tensor flow and
Scikit learn [13, 18, 19].

Discussion

In total, there are five classes that we consider: Bird, Fox, Rodent,
Human, and Empty, by which we label images for training tasks and evaluate
models by inference. Since class size is unbalanced due to the frequency
of animal occurrences, we up-sample minority classes (e.g. fox) using the
Keras Image Data Generator [20]. Doing so ensures that the classification

model is not biased. We resize every image in the image dataset to 1920
1080, and for each class, the dataset contains 251 images used to train
the CNN model. Once model training is complete, the application stores
this model in hdf5 format in object storage at both edge cloud and Nautilus.

As described previously, STOIC moves images from the wildlife refuge
to the public cloud in batches. To better harness the multiple GPU runtime
of the public cloud, the application spawns a process (worker) for each GPU
and adds all images in a batch to a shared asynchronous queue. Upon the
execution, workers remove images (one at a time) from the shared queue
until it is exhausted. This mechanism ensures multiple GPU runtimes evenly
divide the workloads among GPUs and achieve quasi-linear acceleration
at the application level, where the perfect linear speed-up is unattainable
because of model loading and memory transfer overhead [21].

To drive this experiment, we use the workload generator to facilitate
faster-than-real time evaluation of STOIC. The generator uses an image
series and their inter-arrival patterns from a camera trap image corpus
ranging from 2013 to 2017. Shows example histograms for processing time,
transfer time, and deployment time on Nautilus for GPU1 runtime using 150
batches drawn from the workload generator (Figure 5). On the x-axis, we
show the elapsed time for processing time, transfer time, and deployment
time respectively. Note that processing time and transfer times are relatively
stable compared to deployment time.

Selector evaluation

We first evaluate STOIC selector mode for a 24-hour period consisting
of 162 image batches, the sizes of which are drawn randomly from the
work-these four options 92% of the time. That is, STOIC correctly identifies
the fastest option with a success rate of 92%. Further, we define MIN-LAT
(minimum latency scheduler), which is an oracle scheduler that is 100%
correct on selections of runtime. Such scheduler would have resulted in
an aggregate total latency of 10022 seconds, whereas the worst case, in
which the scheduler selects the highest-latency runtime for every run, has
an aggregate latency of 35940 seconds, compared to a STOIC aggregate
latency of 10770 seconds. Thus STOIC achieves an aggregate latency 70%
(3.33 xs) faster than the worst case.

Duplicator evaluation

It shows the performance of the Duplicator using the edge and one
GPU and, separately, the edge and two GPUs from Nautilus (Table 3).
Duplicator of gpu1 runtime achieves the highest success rate (97%), while
duplicator of gpu2 has the lowest average latency.

 Success rate Versus MIN-LAT Versus worst case
Selector 92% 105% 30%
Duplicator edge
vs. GPU1

97% 102% 30%

Duplicator edge
vs. GPU2

95% 101% 30%

Table 3. The comparison of selector and duplicators.

Figure 3. The comparison of predicted and actual total latency on 50 GPU1
benchmark executions with 150-image batch size. The x-axis is the epoch time and
the y-axis is the total latency.

Figure 4. The selector and duplicator modes of STOIC.

Figure 5. The distribution of three components in total response time (Ts) of
150 executions on GPU1 runtime: Processing time (Tp), Deployment time (Td),
and Transfer time (Tt). The x-axis represents the time range, while the y-axis is
the frequency of executions. The deployment time, which is depicted in the red
histogram, is volatile and error-prone to prediction.

J Sens Netw Data Commun, Volume 10: 7, 2021Zhang M, et al.

Page 4 of 4

Conclusion

In this paper, we propose a framework, called STOIC, for executing
machine learning applications in IoT-cloud settings using the serverless
architecture. We present the design principles, implementation details,
the feedback control mechanism, and different modelling methodologies
to address the variability in the edge and public cloud deployments. Our
empirical evaluation demonstrates STOIC can schedule tasks on local and
remote deployments to achieve a speedup of 3.3x versus our baseline
scenario. STOIC’s success rate for prediction placement ranges from 92%
to 97% for the application and datasets that we study.

As part of future work, we plan to investigate substituting RANSAC with
Gradient Boosting Regression Trees (GBRT) to capture the non-linearity
in the processing time due to heterogeneous hardware across deployment
options (runtimes). We also plan to investigate model check-pointing in
duplicator mode to better utilize computational resource on edge cloud and
to improve the overall performance of the STOIC system.

Acknowledgments

This work has been supported in part by NSF (CNS-1703560, CCF-
1539586, ACI-1541215), ONR NEEC (N00174-16-C-0020), and the AWS
Cloud Credits for Research program.

This work was performed in part at the University of California Natural
Reserve System Sedgwick Reserve DOI: 10.21973/N3C08R.

References
1. AWS Lambda. AWS. (2020).

2. The Serverless Applications Framework. Serverless. (2020).

3. Azure Functions. Microsoft Azure. (2020).

4. Build a Serverless Web Application. AWS. (2019).

5. AWS Lambda for Microservices. AWS. (2019).

6. AWS IoT Greengrass. AWS. (2019).

7. Azure IoT Hub. Microsoft Azure.

8. Azure IoT Edge. Microsoft Azure.

9. API Reference. Kubernetes. (2020).

10. Brendan, Burns, Grant Brian, Oppenheimer David and Brewer Eric, et al. “Borg,
Omega, and Kubernetes System Evolution.” Syst Evol 14 (2016): 1-24.

11. Kubeless. GitHub. (2020).

12. Sedgwick Natural Reserve. Sedgwick Reserve. (2020).

13. Nautilus Documentation. Nautilus. (2020).

14. Documentation. Oracle. (2020).

15. Bayesian Ridge Regression. Scikit. (2020).

16. Random Sample Consensus. RANSAC. (2020).

17. Elias, Rosales Andy, Nevena Golubovic, Chandra Krintz and Wolski Rich.
“Where’s the bear?-Automating Wildlife Image Processing Using IoT and Edge
Cloud Systems.” IEEE ACM Second Int Conf Internet Things Des Implement 1
(2017): 247-258.

18. Yann, LeCun and Yoshua Bengio. “Convolutional Networks for Images, Speech,
and Time Series.” Handbook Brain Theory Neural Netw 1 (1998): 255-258.

19. Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort and Vincent Michel,
et al. “Scikit-Learn: Machine Learning in Python.” J Mach Learn Res 12 (2011):
2825-2830.

20. Image Data Preprocessing. Keras. (2020).

21. Campos, Victor, Francesc Sastre, Maurici Yagues and Jordi Torres, et al.
“Scaling a Convolutional Neural Network for Classification of Adjective Noun
Pairs with TensorFlow on GPU Clusters.” IEEE ACM Int Symp Cluster Cloud
Grid Comput 1 (2017):677-682.

How to cite this article: Zhang, Michael, Chandra Krintz and Rich
Wolski.“Function-As-A-Service Acceleration for IoT Applications on Hybrid
Cloud.” J Sens Netw Data Commun 10 (2021): 133.

