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Abstract

Construction of super NLPDE's is performed to the aim of finding novel dynamic evolution equations that describe highly dispersive nonlinear systems. It is found that a
coupled NLPDE generates a super NLPDE. Which may reveal novel nonlinear phenomena and provide an interpretation of the phenomena complexity. Attention is focused
to find the super formulation of the nonlinear, coupled nonlinear Schrodinger (NLS, CNLS), Davey-Stwartson (generalized Zakharov), Higg's, and coupled KdV equations.
The CNLS equation may help to control the propagation of soliton (pulse) waves in fiber optics. These equations are currently used in engineering such as the management
of the concept of soliton in the development of modern technology via the study of Bose-Einstein condensate phenomena. Further, to test the behavior and study the
characteristics of the propagation of laser pulse and high-power fiber laser applications. Here, the extended unified method is used to find the solutions of the traveling wave
to the super KdV equation. These solutions show solitary, soliton with double kinks waves and lumps. We think that the novel equations constructed here will open a new

trend of research that may lead new phenomena in the applied sciences.

Keywords: Super NLPDE's * Super KdV (kdV6) equation * Traveling waves solutions « Extended unified method

Introduction

Nonlinear partial differential equations NLPDEs occupy a wide area of
research in many branches of sciences. They describe complex phenomena
in nonlinear systems. Among them, the study of the propagation of waves
in optical fiber, electromagnetic waves transmission in communication, and
thermopherotic waves in graphene sheets, in electron devices and surface
waves in deep water and shallow water waves near shores. Thus, novel
dynamic evolution equations are of great interest in nonlinear sciences
and in engineering. The present work is of considerable interest in the
engineering sciences as well as the mathematical and physical sciences.
For example, in chemical industry, the objective is to achieve a great
yield of a given product. Which is accomplished by controlling the initial
concentration of the reactant. The essence of this work is to inspire the way
of controlling the propagation of waves in optical fiber, in fluids, in deep and
shallow water

They may reveal new nonlinear phenomena and provide a wide
scope of research works. To this issue, different approaches have been
developed in the literature, which are the perturbative technique [1-3], the
Lax pairs [4,5], the commutator of operators in the symmetries that arise
by using the Lie group analysis to nonlinear partial differential equations
NLPDE's, [6,7] and the conservation laws [8-10]. Here, we are interested
with the nonlinear Schrodinger NLS and the coupled nonlinear CNLS, Davy-
Stewartson DS, The Higgs., and the coupled KdV equations. Applications
of NLS are in Bose-Einstein condensation [11,12], fluid dynamics [13-15],
plasma physics [16,17], and in optics [18,19]. While the CNLS which in
general of the type Gross-Pitaeviskii equation [20-22]. The later has many
applications, in optical fiber [23] . the atmospheric gravity waves [24]. Also,
it describes condensate dynamics in the limit when the many-body wave
function represents the condensate, that is to the low-temperature regime
[25]. The DS equation is applicable for water waves theory for internal
gravity waves [13] and for ferromagnetism. Also in the study of the envelope
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gravity solitary waves in Baroclinic atmosphere [15]. In this paper we are
concerned with constructing super NLPDEs. In chemical engineering
quadratic, cubic, or quartic autocatalytic reactions are described by coupled
nonlinear reaction diffusion equations. When analyzing these equations,
the initial concentration of a reactant can be be controlled to produce great
yield of the required output (product).

Construction of Super PDE’s

Here we consider five cases.

1. The NLS equation which reads

ip+p.—clpl p=0, (1)
where p is complex function and p=u+iv, thus (1) is rewritten
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In (5) the functions u, and v, are linearly dependents. Thus v,= A u,
and we are left with the first equation in (5) which is the super Schrodinger
equation.

2. The DS equation in (2+1) dimensions. it reads

i, +u, +u, + fulu [ uv=0, VeV, —B(u [, =0. (6)

In (6) u=u, + iu,, and it is rewritten
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We mention that in (8) the third equation holds identically. Here M~
not unique.Thus in this case we can get many super equations. Also, we
can have
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From ( ), by setting det M~ =0, we get the first super DS equation,
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When using (9), we have a second super DS equation, which is

(ﬂ ((V Yy |u [ =, (V) [u ) - ( 22)(2%(V2)u2 (1)

+B(u, (V) = (VP |u | ))=0-

In (10), by replacing (.) by u,, u, and v we have u,=Au,, and v=Bu, so
that (10) reduces to

B2 s ) - %—%)(—zg(vz)u,
—Bu, \u |2 ~Puy |u)u, = 0.
By the same way we get the second super DS equation.
3. The Higg's equation
u, —u, —du+pBluf u-2uv=0,v,+v_ —pBlul=0, (12)
where u is complex function, u=u_+iu,, v is real, and (13) is
—ou +fBlul u,

—ou, + f|u ‘2 u, —2u,v =0, (13)
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From the equations for u, and u, we find that they are linearly
dependent, that is In the operator form (14) is
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Finally the super Higg’s equation is
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In (16) we replace (.) by u, and v, and also we have v=Bu,, so , we
have (16) is
2
(V2 =)= V) = puu P V2 +28u, |ul %)ul =0. (16)
4. The CNLS equation. It reads
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Where u and v are complex functions, u= u, + iu,, v= v +iv, and (18)
becomes
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By the same way as in the super NLS equation, here the super equation

L=
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And L~ is defined in (20). By replacing (.) by u,vi = 1,2, we get four

equation with the same operator. So, each pair is linearly dependent and we
have u,= Au,, v,=Bu, and v, = Cu,. Finally (20) is rewritten
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5. The coupled KdV equation which t reads
u +vu +u_ =0,v,+uv +v_ =0. (22)
In the operator form, (23) is written
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By the same way and by bearing in mind that v= Au, we get
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It worthy to notice that (25) is an another version to the KdV6 which was The results in (32) are displayed in Figure 1a against x and t.

obtained and studied in [26-29]. Figure 1a The results in (32) are displayed against x and t when

Traveling wave solutions of the super KdV equation ay=1.7,5,=2,a,=3,5,=2,=.8,y=-0.5, ¢,:=.02,c,=-30,4,:=05,

Here the equation (25) is considered.The traveling wave solutions TWS /= (-0151+~/45909601), 2= fx+ yt.
of (25) are found by using the unified methods [26-31].To this end we use Figure 1b. The results in (37) are displayed against x and t

the transformations u (x,t) = v(z) and z= Bx+ yt.
tf) = v(z) Pxt v tf=2.6,s,=54=37,5,=19,5=02,4,=2.1,a,=2.6,a,:=1.3.

_ 2 ! 2 2" 2 " 6_.(6) — 25
AF V() @) +y7v G+ 2877y (2)+ Fv7(2) =0 (@5 Figure 1a shows lump soliton wave with periodic wave background,
By the methods in some studies [30,31], solutions are expressed for, while Figure 1b shows soliton wave with double kinks.
by the form of polynomial, or rational, function, in an auxiliary function

that satisfies an auxiliary equation. In the case of so solution which is a (ii)-Multi linear auxiliary equations which are taken,

polynomial function, we write . g(2) =g (2)+¢,, 8,(2) = dg,(2) +d,, (32)
1 . ’ D p .
w(z)=Ya,g(z),g(2)" =D c,gz), p=12, (26)  and the solution is
— rd
Where p=1 or p=2 The solution of auxiliary equation is elementary or Wz) = (0,8(2)+a,8,(2)+a,+a,8,(2)g, (Z)). (33)
periodic (or elliptic) solutions respectively. In (28) the values of n and k are (5,8,(2) +5,8,(2) +5, +5,8,(2)g,(2))
getermine?kfrt)mm t:e bkalancle and c(;)nsisltency [cor]1ditions. When p=1, we By using v(z) = w (z) inserting (33) and (34) into (26) calculations give
ave n=2 (k-1) and 1<k< 13/5.. For details see [30].
. . . . al:assl/Ssaso:Slsz/S3a7/:c1:32(1_\/1_‘312ﬂ2):
In the case of single wave rational function solution, we have -
ag(z)+a, ok . 1B 2m (1533 +2m)
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Theorem 1: A necessary condition that a NLPDE has a periodic (or =as. /s c = (=5,(9+24/6) d = (=5+6)s1 ~
elliptic) solution is that all terms are of even or odd derivatives with p=2 and ORI 3 B2 +3V3) Y (3V2-5V3p)
@) =>" c,a(z) . We have
2 _ . s __©+246)z s (=5+4/6)z/
Rroof: In the case of even order derivatives, thgn after calculation each g(2)=2+e 3(2ﬁ+3ﬁﬂ)Al’ g (z)="L+ JRENCENGY] 4,. (35)
term is free from the square root, so that the equations result are also free. S5 S,
In the case of odd order derivatives all terms factored by the square root By inserting (35) and (36) into (34),we get
and also the equations result are, thus, free. P z 2z
_ _n 3B N 2
Theorem 2: A sufficient condition for the existence of periodic (elliptic) v(z) = EZ B, =27 (= Ay + 4,7 5,)(a58,5, — 4ys3),
solutions is that the solutions of the equation obtained are consistent. By 2 (36)
theorem1, (26) has no periodic (elliptic) solutions so we are concerned with = =
the case pil.) " ) 0= ‘/g(zeﬁ/jszfr A4s5,) (25, + 4,e77)s,) B.

Now we find the TWS by using (27) and distinguish the following cases: (1a)

¢ 100

(i)-Case of quadratic auxiliary equation when k=2 in (27),

g/(Z):ng(Z)2+Clg(z)+CO. (28)
By substituting from (29) into the first equation in (27), calculations give
rise to
y= €35 (=60c2s! —6151c,c,5252)(2cys°

N (2¢,57 +22¢,5757)
+22¢,5757) +33645¢2s, B,

o _ (F6151+/45909600)c,s5)  _es, [T

! 120s? T s N30

ay= g, P = (3(10(-6031++/45909601 —~/430h)\ Aa,s, +

h,

J(70(1302091010682721 - 19214603067 15/45909601 + 2020329446648+/30% — . i ) o
298362248, [T377288030) )25 5°)), © = (~60 -+ y/30R YN/ Figure 1a. Lump soliton wave with periodic wave background.
220 e 5
= (=6151+/45909601).
The solution of the auxiliary equation is (1b)

t
20
; 1pls

h
—s5,(c,z—120s7 4))
J%So(ﬁ - 2tanh(\E ) (30) w <N

=

2s,

§@)=- 4s,

Finally the solution of (26) is

v(z)= g, B= —(60h\/105(1302091010682721—192146030671\/45909601 +q)
1

h/ 2
—5,(c,2=120s74)) _ 2 53,405
158 B° (sech( 15 .0, :(( 60+~/30h)° s, s,

2s} (aosl—also)

25, ixu (c,z—1 ZO.VIZA] )
+30h = 2\1Sh (tanh(—B——— ), . ' . .
25 Figure 1b. Soliton wave with double kinks.

q=2020329446648+30h —298362248/13772880304.
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z2(u=v))

rz .z
(Arpcos(T) =@V + Ap(u+v))sin(),
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The results in (37) are displayed against x and are shown in Figure 1b.
e 2
g(2)=
ry
2(u-v) (42)
2 rz .1z
(Areos()+ Qo+ Ay(ue+v))sin(),

(iii)-Coupled auxiliary equations
()= (a0,g(2)+a,k(z)+a,)
(37) k(z) = e
-
r=(=u+v)(u+3v).

(5,8(2) +s,k(2) +5,) ’
kK (2)=g(2)+ 4,
Thus we have two solutions that correspond to the auxiliary functions in
(42) and (43) and they are respectively

_ 8444727335,
P
V(Z) = _72,
o

g (2)= ag(2)+ k() + 4,,

=aﬂ2(3+\/973a2ﬁ2) oo %
4 304 > 2’
z(—p+v+p))
0,=Q2e °?
+A1s1y(p+v)—v+ez”(p—y+v))z,

4+/44727332
(e "7 (161692\/44727332ﬁ3,+1634018929ﬁzB‘
(39)

By the same way we have
a :_mala/z)’(s:_sf;u’ao :m’Al :sia:8x14472733 A=
2 s? 5, 5, 404238 404235, 8
e —(s7 (soa(—417a* B° +232ay +16y°) + 4,5,(441a* B° — 448ay +144y7))
’ 164 (=14 m)* a* (= A4ys, +5,2) B '
s 2(—p+v+p)) pz
L (38) P=2e 2 )plays—as) A, p(u=vveosh(>)
. . bz (43)
H(A(p™ +(u—vYyV)+ Ap(p+u—v)(p—p+ V)smh(T),
psou+ sv(p—pu+e”(p+u-v)+v)

and
S, U
) = 52018929 57
By inserting (39) and (40) into into the second equation in (38) The
results are too lengthy to be produced here. The solution obtained is and
displayed against x and t in Figure 2. o
P i rz
The results for the solution are displayed against x and t. viz)=—B=e * r(as —also)ﬂ(—ZAzr(#—V)VCOS(E)
3
When, +AuT +(p=v)) = A" +(u-v)) )sin(z)
a,=0.005,B :=-5.8,a=1.5;4 =63,s,=1.5,5,:=500,B, =0.7, f = 025z := fx + yt. # # H“ H 2 ’ (44)
223 ZH
O, =2e?rsyu+e?rs,(Au+ sz)cos(r—zz)
= L FZ. .,
—e Sl(/—l_v)(Auu_sz)Sm(?)) .
The solutions (44) and (45) are displayed against x and t in Figures 3a

This figure exihibts solitary wave.

(iv)-Coupled auxiliary equations. When
(0,8(2) + ak(2) +a,) ( )

(5,8(2) +5,k(z) +5,)
and 3b respectively.

g (2) = ag(2)+5k(2), k (2) = ug(z)+vk(z), w(z) =
Figure 3a when,
ay,=3,5y=2,a,=5,5,=2.5,u=15v:=13,4=354,=27,=02,y=-0.7,z= fx+t.

By the same way we have
:(So(ausl_also)zﬂ_sﬁsu}/z) a _av (=2s,4+5,v) 5:75‘227,” s _S5v
B —as) 7 u s s
gz = (e:w;wm(uzfl.+uvA.+upA1+e’”#pAl
2up . bwh
20 A, — e (u(p V) A + 200 A), (41) Figure 3b when,
_xCutrep) ) ) , a,=3,5,=2,a,=1.5,5,=2.5,4=0.5,v=0.55,4=3.5,,4=27,=02,7y =—0.07.
k(z) = e (—1+e?W+(1+e?)pA, + (—1+e?)u(2A4, + A4,)) . . . . . .
2p " Figure 3a shows soliton wave with double kinks, while Figure 3b shows
=S+ 3v), 1> v, 1> 3y, lump solitary wave.
When p < v, p>-3v, we have The comparison between the method used here and the known
methods is done in the following:
1. In This paper the unified method, presented by the author, was
used. After this nomenclature , this method unifies all known
methods such as, the tanh , modified , and extended versions, the
F-expansion, the exponential, the G'/G expansion method, The

Kerdyashov methods [30].
(3a)
20

/

If[ ——
I.'|
/\
|
o ff| 10
| ;‘/ | / | ;
/L I =SS5 :
i "Ul f i 0.01 Ess .‘|
/ == wxt) o |
0.04% | ~
Nk 0.00 ‘\l \ |
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0.00 —ootf O
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Figures 3a. Soliton wave with double kinks.
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X

Figure 2. The results for the solution are displayed against x and t.
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