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Abstract
Construction of super NLPDE’s is performed to the aim of finding novel dynamic evolution equations that describe highly dispersive nonlinear systems. It is found that a 
coupled NLPDE generates a super NLPDE. Which may reveal novel nonlinear phenomena and provide an interpretation of the phenomena complexity. Attention is focused 
to find the super formulation of the nonlinear, coupled nonlinear Schrodinger (NLS, CNLS), Davey-Stwartson (generalized Zakharov), Higg’s, and coupled KdV equations. 
The CNLS equation may help to control the propagation of soliton (pulse) waves in fiber optics. These equations are currently used in engineering such as the management 
of the concept of soliton in the development of modern technology via the study of Bose-Einstein condensate phenomena. Further, to test the behavior and study the 
characteristics of the propagation of laser pulse and high-power fiber laser applications. Here, the extended unified method is used to find the solutions of the traveling wave 
to the super KdV equation. These solutions show solitary, soliton with double kinks waves and lumps. We think that the novel equations constructed here will open a new 
trend of research that may lead new phenomena in the applied sciences.
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Introduction

Nonlinear partial differential equations NLPDEs occupy a wide area of 
research in many branches of sciences. They describe complex phenomena 
in nonlinear systems. Among them, the study of the propagation of waves 
in optical fiber, electromagnetic waves transmission in communication, and 
thermopherotic waves in graphene sheets, in electron devices and surface 
waves in deep water and shallow water waves near shores. Thus, novel 
dynamic evolution equations are of great interest in nonlinear sciences 
and in engineering. The present work is of considerable interest in the 
engineering sciences as well as the mathematical and physical sciences. 
For example, in chemical industry, the objective is to achieve a great 
yield of a given product. Which is accomplished by controlling the initial 
concentration of the reactant. The essence of this work is to inspire the way 
of controlling the propagation of waves in optical fiber, in fluids, in deep and 
shallow water

They may reveal new nonlinear phenomena and provide a wide 
scope of research works. To this issue, different approaches have been 
developed in the literature, which are the perturbative technique [1-3], the 
Lax pairs [4,5], the commutator of operators in the symmetries that arise 
by using the Lie group analysis to nonlinear partial differential equations 
NLPDE’s, [6,7] and the conservation laws [8-10]. Here, we are interested 
with the nonlinear Schrodinger NLS and the coupled nonlinear CNLS, Davy-
Stewartson DS, The Higgs., and the coupled KdV equations. Applications 
of NLS are in Bose-Einstein condensation [11,12], fluid dynamics [13-15], 
plasma physics [16,17], and in optics [18,19]. While the CNLS which in 
general of the type Gross-Pitaeviskii equation [20-22]. The later has many 
applications, in optical fiber [23] . the atmospheric gravity waves [24]. Also, 
it describes condensate dynamics in the limit when the many-body wave 
function represents the condensate, that is to the low-temperature regime 
[25]. The DS equation is applicable for water waves theory for internal 
gravity waves [13] and for ferromagnetism. Also in the study of the envelope 

gravity solitary waves in Baroclinic atmosphere [15]. In this paper we are 
concerned with constructing super NLPDEs. In chemical engineering 
quadratic, cubic, or quartic autocatalytic reactions are described by coupled 
nonlinear reaction diffusion equations. When analyzing these equations, 
the initial concentration of a reactant can be be controlled to produce great 
yield of the required output (product).

Construction of Super PDE’s

Here we consider five cases.

1. The NLS equation which reads
2| | = 0,t xxip p p pσ+ − 			                   (1)

where p is complex function and p=u+iv, thus (1) is rewritten
2 2| | = 0, | | = 0,t xx t xxv u p u u v p vσ− + − + + 	                 (2)
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The equation (3) leads to det M̑=0, so,we get the operator equation
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 By operating on the functions u0 and v0 we have
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In (5) the functions u0 and v0 are linearly dependents. Thus v0= A u0 
and we are left with the first equation in (5) which is the super Schrodinger 
equation.

2. The DS equation in (2+1) dimensions. it reads
2 2| | = 0, (| | ) = 0.t xx yy xx yy xxiu u u u u uv v v uβ β+ + + −               (6)

In (6) u=u1 + iu2, and it is rewritten
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In the operator form equation (7) is
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We mention that in (8) the third equation holds identically. Here M̑ is 
not unique.Thus in this case we can get many super equations. Also, we 
can have
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From (8), by setting det M̑=0, we get the first super DS equation,
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When using (9), we have a second super DS equation, which is
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In (10), by replacing (.) by u1, u2 and v  we have u2=Au1, and v=Bu1 so 
that (10) reduces to
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By the same way we get the second super DS equation.

3. The Higg’s equation
2 2ð | | 2 = 0, | | = 0,tt xx tt xx xxu u u u u uv v v uβ β− − + − + −               (12)

where u is complex function, u=u1+iu2, v is real, and (13) is

2
1 1 1 1 1 2 2

2
2 2 2

2

| | 2 = 0,
| | 2 = 0,

| | = 0.

tt xx tt xx

tt xx xx

u u u u u u v u u
u u u u v
v v u

σ β
σ β

β

− − + − −
− + −

+ −

	              (13)

From the equations for u1 and u2, we find that they are linearly 
dependent, that is In the operator form (14) is
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Finally the super Higg’s equation is
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In (16) we replace (.) by u1 and v, and also we have v= Bu1, so , we 
have (16) is
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4. The CNLS equation. It reads
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Where u and v are complex functions, u= u1 + iu2, v= v1+iv2 and (18) 
becomes
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In the operator form of (19) is
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By the same way as in the super NLS equation, here the super equation 
is
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And L̑ is defined in (20). By replacing (.) by ui,vii = 1,2, we get four 
equation with the same operator. So, each pair is linearly dependent and we 
have u2= Au1, v1=Bu1 and v2 = Cu1. Finally (20) is rewritten
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5. The coupled KdV equation which t reads
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In the operator form, (23) is written
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It worthy to notice that (25) is an another version to the KdV6 which was 
obtained and studied in [26-29].

Traveling wave solutions of the super KdV equation

Here the equation (25) is considered.The traveling wave solutions TWS 
of (25) are found by using the unified methods [26-31].To this end we use 
the transformations u (x,t) = v(z) and  z= βx+ γt.

2 2 2 2 6 (6)( ) ( ) ( ] 2 ( ) ( ) == 0.' '' '''A v z v z v z v z v zβ γ β γ β− + + + 	              (25)

By the methods in some studies [30,31], solutions are expressed for, 
by the form of polynomial, or rational, function, in an auxiliary function 
that satisfies an auxiliary equation. In the case of so solution which is a 
polynomial function, we write

=1 =0
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v z a g z g z c g z p∑ ∑ 	             (26)

Where p=1 or p=2 The solution of auxiliary equation is elementary or 
periodic (or elliptic) solutions respectively. In (28) the values of n and k are 
determined from the balance and consistency conditions. When p=1, we 
have n=2 (k-1) and 1≤k≤ 13/5.. For details see [30].

In the case of single wave rational function solution, we have
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Theorem 1: A necessary condition that a NLPDE has a periodic (or 
elliptic) solution is that all terms are of even or odd derivatives with p=2 and 

=0
( ) = ( )pk' j

jj
g z c g z∑ .

Proof: In the case of even order derivatives, then after calculation each 
term is free from the square root, so that the equations result are also free. 
In the case of odd order derivatives all terms factored by the square root 
and also the equations result are, thus, free.

Theorem 2: A sufficient condition for the existence of periodic (elliptic) 
solutions is that the solutions of the equation obtained are consistent. By 
theorem1, (26) has no periodic (elliptic) solutions so we are concerned with 
the case p=1.

Now we find the TWS by using (27) and distinguish the following cases:

(i)-Case of quadratic auxiliary equation when k=2 in (27),
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The solution of the auxiliary equation is
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Finally the solution of (26) is
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The results in (32) are displayed in Figure 1a against x and t.

Figure 1a The results in (32) are displayed against x and t when 
0 1 1 0= 1.7, = 2, = 3, := 2, = .8, = 0.5,a s a s β γ − 0 2 1:= .02, = 30, := 0.5,c c A−

:= ( 6151 45909601), = .h z x tβ γ− + +

Figure 1b. The results in (37) are displayed against x and t

2 1 3 1 2 3 0= 2.6, = 5, = 3.7, = 1.9, = 0.2, = 2.1, = 2.6, := 1.3.t s A s s A a aβ

Figure 1a shows lump soliton wave with periodic wave background, 
while Figure 1b shows soliton wave with double kinks.

(ii)-Multi linear auxiliary equations which are taken,
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By using v(z) = w (z) inserting (33) and (34) into (26) calculations give
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By inserting (35) and (36) into (34),we get
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Figure 1a. Lump soliton wave with periodic wave background. 

Figure 1b. Soliton wave with double kinks.
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Thus we have two solutions that correspond to the auxiliary functions in 
(42) and (43) and they are respectively
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The solutions (44) and (45) are displayed against x and t in Figures 3a 
and 3b respectively.

Figure 3a  when,

0 0 1 1 1 2= 3, = 2, = 5, = 2.5, = 1.5, := 1.3, = 3.5, = 2.7, = 0.2, = 0.7, = .a s a s A A z x tµ ν β γ β γ− +

Figure 3b when, 

0 0 1 1 1= 3, = 2, = 1.5, = 2.5, = 0.5, = 0.55, = 3.5;, = 2.7, = 0.2, = 0.07.a s a s A Aµ ν β γ −

Figure 3a shows soliton wave with double kinks, while Figure 3b shows 
lump solitary wave.

The comparison between the method used here and the known 
methods is done in the following:

1.	 In This paper the unified method, presented by the author, was 
used. After this nomenclature , this method unifies all known 
methods such as, the tanh , modified , and extended versions, the 
F-expansion, the exponential, the G’/G expansion method, The 
Kerdyashov methods [30].

The results in (37) are displayed against x and are shown in Figure 1b.
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2 40423 40423

a s s sma sa a A A
s s s s

α µδ α
β β

− −

2 4 6 2 4 6 2
1 0 0 1

2 2 2 2
1 0 1 0

( ( ( 417 232 16 ) (441 448 144 )):=
16 ( 1 ) ( )

s s A sA
a m A s s

α α β αγ γ α β αγ γ
α α β

− − + + + − +
− + − +

,

2 2 2
1

2
(3 9 3 )= , = ,

304 2
ssαβ α β αγ

+ −
−                                                       (38)

and
4 4472733

2404230
1 12

1

1( ) = ( (161692 4472733 1634018929
1634018929

zsg z e z B B
s

β β β
β

− + +

						                   (39)

By inserting (39) and (40) into into the second equation in (38) The 
results are too lengthy to be produced here. The solution obtained is 
displayed against x and t in Figure 2. 

The results for the solution are displayed against x and t. 

When,

 1 1 1 1 0 2= 0.005, := 5.8, = 1.5; = 6.3, = 1.5, := 500, = 0.7, = .025 := .a B A s s B z x tα β β γ− +  

This figure exihibts solitary wave.

(iv)-Coupled auxiliary equations. When

1 2 0

1 2 0

( ( ) ( ) )( ) = ( ) ( ), ( ) = ( ) ( ), ( ) = .
( ( ) ( ) )

' ' a g z a k z ag z g z k z k z g z k z w z
s g z s k z s

α δ µ ν + +
+ +

+ +  (40)

By the same way we have
2 4 2 2

0 0 1 1 0 1 0 1 2 1 2 1
2 22 2 2 2

0 1 1 0 1 1
( ))

22
1 1 1 1

2 2
2 1 2

( ))
2

2

( ( ) ) ( 2 )= , = , = , = , = ,
( )

1( ) = ( (
2

2 ( ( ) 2 )),

(( 1 ) (1 )( ) =

z p
zp

zp

z p
zp zp

s a s a s s s a s s s sA a s
a s a s s s

g z e A A pA e pA
p

A e A A

e e e pAk z

µ ν

µ ν

µ γ ν µ ν µ να δ
β µ µ µ

µ µν µ µ
µ

ν µ µ ν ν

ν

− + +
−

− + +
−

− − − +
−

−

+ + +

+ − + +

− + + + 1 2( 1 ) (2 )) ,.
2

= ( )( 3 ), > , > 3 .

zpe A A
p

p

µ

µ ν µ ν µ ν µ ν

+ − + +

− + −

 (41)

When  µ < v, µ>-3v, we have

Figure 2. The results for the solution are displayed against x and t. Figures 3a. Soliton wave with double kinks.
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2.	 On the other hand the extended unified method proposed, also by 
the author may be sufficient to replace the analysis of using the 
symmetries by inspecting the symmetries that arises by using Lie 
group [31].

3.	 Using the generalized unified method, presented by the author, is 
more powerful tool than using the Hirota method [31].

Conclusions

We have constructed Some super (novel) NLPDE’s equations which 
describe highly disperive waves in nonlinear systems in optical fiber, Bose 
Einstein condensate, in ferromagnitism and in deep and shallow water.. 
Among these equations the super KdV which is known in the literature 
by the KdV6. This last equation is studied and a class of traveling waves 
solutions are obtained. These solutions exhibit solitary, soliton with double 
kinks waves and lumps. We think that this work will lead to a new trend of 
research when treating the novel NLPDEs found in this work. That may lead 
to reveal many comlex phenomes in nonlinear optics, fulid and nonlinear 
waves in shallow water.
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