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A Spatial-Nonparametric Approach for Prediction of 
Claim Frequency in Motor Car Insurance

Abstract
Spatial modeling has largely been applied in epidemiology and disease modeling. Different methods such as generalized linear models (GLMs), Poisson regression 
models, and Bayesian Models have been made available to predict the claim frequency for forthcoming years. However, due to the heterogeneous nature of policies, 
these methods do not produce precise and reliable prediction of future claim frequencies; these traditional statistical methods rely heavily on limiting assumptions 
including linearity, normality, predictor variable independence, and an established functional structure connecting the criterion and predictive variables. This study 
investigated how to construct a spatial nonparametric regression model estimator tor for prediction of claim frequency of insurance claims data. The study adopted a 
nonparametric function based on smoothing Spline in constructing the model. The asymptotic properties of the estimators; normality and consistency were derived and 
the inferences on the smooth function were derived. The simulation study showed that the estimator that incorporated spatial effects in predicting claims frequency is 
more efficient than the traditional Simultaneous Autoregressive model and Nonparametric model with Simultaneous Autoregressive error. The model estimator was 
applied to claims data from Cooperative Insurance Company insurance in Kenya with n = 6500 observations and the findings showed that the proposed model estimator 
is more efficient compared to the Local Linear fitted method, which does not account for spatial correlation. Therefore, the proposed method (Nonparametric spatial 
estimator) based on the findings has significant statistical improvement of the existing methods that are used for the prediction of claims. The study had a number of 
limitations, where the data used in the study is Lattice data (without a coordinate system); therefore, there was difficulty in classifying the claims to a specific area in 
the region (County).
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Abbreviations
CIC: Cooperative Insurance Company

DP: Dirichlet Process

GB2: Generalized Beta of the Second Kind

PLS: Penalized Least Square

SAR: Spatial Autoregressive

LL: Local Linear

Introduction
Insurance has a fundamental role in providing financial protection and offering 
a transfer risk in exchange for an insurance premium. Therefore, estimation 
of the right premium for the policyholders is the noblest task in the insurance 
business. Insurance companies provide insurance to policyholders, and in 
turn, the policyholders have to pay insurance premiums through the agreed 
time (periodically). Due to competition in the market, charging a fair premium 
according to the policyholder’s expected loss is profitable for the insurer. The 
company will attract more customers and boost customer relationships with 
the insurer. The amount of premiums paid by the policyholders is determined 
from estimates of their expected claim frequencies and the claims’ severity. 
Setting precise and reliable estimates of claims frequencies has extreme 
importance.

Recent studies on spatial modeling have been rapidly applied in many fields; 
epidemiology, public health, and the Insurance sector. Different models 
commonly employed to fit current claims data and predict claim frequencies 
are Poisson regression models, generalized linear models, Credibility models, 
Bayesian Models. However, from the available literature, these models 
appear to be relatively inflexible. Essentially all models are wrong, but some 
are useful, which is true when the process being modeled is either not well 
understood, or the necessary data are not available [1]; the same problem of 
choosing the model is experienced in the modeling of the claims, Although 
the generalized linear models provide accurate and fast analysis of insurance 
data, they fall short because they are defined based on the assumptions, 
and an incorrect model assumption can cause model misspecification leading 
to erroneous results. Nonparametric models are deemed to minimize the 
shortcoming of these standard parametric models since fewer assumptions 
are made for the model, therefore, suitable for modeling insurance data 
which are nonlinear, nonparametric models perform better than generalized 
linear models (GLMs) [2], the only observable problems with modeling using 
Nonparametric models are the interpretation of some of their curves. When 
modeling claims and risks, we need to determine their behavior and spatial 
dependence, and spatial heterogeneity of the data so that the insurer can 
determine which areas are associated with a higher riskier when determining 
premiums amount to be paid.

[3] propose a Bayesian nonparametric approach for prediction of claims, here 
they found out that the model performs better compared to nonparametric 
GLMs in that it can capture the nonlinear random effects present in the 
data, [4] also propose a flexible nonparametric loss model for prediction of 
the claims, they found out that having flexible multivariate model may allow 
actuaries to estimate the dependence between different risk classes and 
different lines of business and this topic need to be explored further, and 
introduce the idea of using nonparametric data mining approach to modeling 
of the claims and prediction of risk, here the approach classify risk and predict 
claim size based on data. This study’s research idea was to build based on 
the study by [5,6] where they introduce a nonparametric spatial regression 
model for prediction. This study’s primary objective is to construct a spatial 
nonparametric estimator for the prediction of insurance claims. Therefore, 
this study’s main contribution was to investigate the estimator’s performance 
in the situation of additional covariates in the model and incorporate the 
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aspect of spatial dependence in constructing a nonparametric estimator for 
the prediction of insurance claim frequencies.

The main difference between this research and [6, 7] are as follows: (1) 
estimate a nonparametric spatial model where estimation of the unknown 
trend g (·) is based on smoothing spline (2) Rather than assuming that spatial 
correlation takes a particular form (as in SAR), spatial correlation and spatial 
heterogeneity are considered simultaneously with second order stationarity 
(3) the estimators’ asymptotic properties under mild conditions.

Methods and Materials
In this section, we propose methods of estimating a claim frequency model 
for prediction. The basic claim frequency model is introduced, stressing 
the need to introduce a new method of estimating a more flexible claim 
model where the basic model restriction is relaxed. The spatial effects are 
incorporated to complete the proposed model.

Claim Model
Claim model is used a generalized linear model in modelling aggregate 
claims in non-life insurance [8]. This aggregate claim model can be improved 
by adding a more attractive feature on the way the fit is. Defined the following 
terms

1. Claim severity is the total claims divided by the number of claims 
(average size per claim)

2. Claim frequency is the number of claims divided by the duration 
(average number of claims per unit time)

Most traditional claim models have assumed that the claim follows a Poisson 
process with a rate



; on the other hand, claim severities follow a continuous 
model, and gamma distribution has been extensively used. The aggregate 
claim model is given by

1 2 it YS X X X= + +…+                      (1)

Where St is the aggregate claim amount of a given trading yearn t, Yi is 
random number that denotes the number of claims in a year t, Xi with i = 
1,2,…Yi is the amount of ith  claim realized in the year t. Some of the important 
assumptions as defined in the model equation (1) include

( )iY Poisson λ∼ for some0 < ƛ < ∞ are iid i∀
Yi and Xi  are independent i∀
Xi  are iid i∀
Traditionally in insurance practice, the claim frequency has been modelled 
following Poisson distribution and Xi has the form of the loss distribution, 
i.e., separate gamma distribution for the claim severity [9]. Modeling the 
frequency of claims, let Yi denotes the number of claims involving i policies 
at time t, then the total expected number of claims Y is expressed as

1

m

i
i

Y Y
=

= ∑
m is the total number of observed policies, Yi is mostly assumed to follow 
discrete distribution of which Poisson distribution has been commonly used 
in many models. Yi depends on covariates such as the region where the 
policy was taken, age, sex, type of vehicle, number of claims per policy, 
years of policy ownership, insured cases number for a user and average 
claim size, then

( )Y
i iY Poisson λ∼

Where mean is given by

( )Y
i i i it exp Xλ β=

Xi is covariate vector for ith observation and is assumed to have linear 
relationship with Yi, ti denotes the exposure time of policyholder i and βi 

denotes a vector of unknown regression parameters.

The assumptions on Xi and Yi are mispecifications, and if the data appear 
to be nonlinear, it will create a substantial modeling bias. Therefore, a 
nonparametric method is proposed; the main aim of this nonparametric 
technique is to relax highly restrictive regression function [10].

Model Estimation
The study proposes a nonparametric regression model to predict the number 
of claims Yi, i = 1,….n observed in region J  in order to relax restrictive 
assumption on the distribution of number of claims and Xi  covariates vector 
for the ith  claim. Since claims in each region, J has nonlinear relation with 
the covariates '

iX s . The nonparametric form of the model is given by the 
general form [11, 12].

( ) T
i i i iy g x Z b= + +ò

G (.) is unknown nonparametric function used to model fixed effects, T
iZ b  

and i  for random unobserved effects. Since the form of T
i iZ b R=  for Ri is 

unknown, the study aims to estimate Ri that account for the spatial effects. 

Let ( )1,...,1 TI = and ( )1, , T
Nn n n= … be two N dimensional vectors. We 

make assumption about the spatial model as

( ) ( ) { } { }2
11, , 1, ,i i i n NY g X R var R i n nσ= + = Σ ∈Λ = … ×…× …            (2)

Where, ( )1, , Ni i i= … in Ʌn will be referred to as site, Ri cater for the spatial 
effects (Random effects) and the cardinality of Ʌn is 

n nΛ =∣ ∣  [13].

Modeling spatial data as a finite realization of a vector stochastic process 
indexed by ( )1, , T

nR R R= … ( )1, , T
nR R R= …  follow joint Gaussian distribution 

here E(Ri) = 0, ( )2
ivar Rσ = and ni∀ ∈Λ , ( ),i jR Rρ Σ =    correlation 

coefficient matrix that need to be estimated. For the vector ( )1, , d
i idX X… ∈R , 

iY ∈R  and g (·), the unknown function g (·),  need to be estimated for 
( )1, , d

dx x x= … ∈R , the response variable Yi  is claim frequency and Xi 
is six dimensional vector consisting of the following explanatory variables: 
gender, claim amount, age of the policyholder, gender, vehicle age, model of 
the vehicle and age category of the policyholder. 

Estimating g(x) at some point dx∈R , for Xi in the neighborhood of x, g(Xi) 
can be estimated by using smoothing spline [14]. The estimator ( )

^
g ⋅ of g ( )⋅

is the minimizer of

( ){ }2

1

1 ;
n

T
i i

i

Y g X
n

β λβ β
=

− + Ω∑                 (3)

Which can be represented as
2 T

iY Gβ λβ β− + Ω 

where n nG ×∈  is basis matrix defined as

( ), 1,in n iG x i nψ= = …

Where 1, nψ ψ… are the truncated power basis functions with knots at x1,…

xn which is evaluated at the data values

( )
( )

( ) ( )
0

, 1

n
i

pn
i n p

x n p
x

x N p n N
ψ

− +

 ≤ ≤= 
− + ≤ ≤

( ) ( )0,
p p

n p i nx N max x N n φ− +
− = − ∈  where p is compact interval. p is 

the degree of the spline and i N pn n −<…<  are fixed points or knots in φ . 

 n n×Ω∈  is the penalty matrix defined as

( ) ( )'' '' , 1,in i ng x x dx i nψΩ = = …∫
Given the optimal coefficients 

^
β minimizing (3), the smoothing spline 

estimate at x is therefore defined as
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( ) ( )
^ ^

1

n

ni n
n

g X xβ ψ
=

=∑                  (4)

The term affects shrinking components of estimation
^
β  towards zero. The 

parameter ƛ ≥ 0 is the smoothing parameter.

Each computed coefficient 
^

nβ  corresponds to a particular basis function
.nψ  the term Tβ βΩ  in (3) imparts more shrinkage on the coefficients

^

nβ  

that correspond to wigglier functions ( )n xψ .  Hence, as we increase ƛ, we 

are shrinking away the wiggler basis functions. Similar, to least squares 

regression, the coefficients
^
β  minimizing (3) is

( ) ( )
^ 1 1T T T TG G G Y X X n D X Yβ λ λ

− −
= + Ω = +

The smoothing spline can be seen as linear smoother, therefore we 
represent as

( ) ( ) ( ) ( )
^ ^ 1T T T T

ig X g x g x X X n D X Yβ λ
−

= = +                   (5)

which is linear combination of the points Yi, i = 1, …n and X is a design matrix 
with entries xi  for i = 1, …,n, Y, Y is a vector of the response variables, D is 
a diagonal matrix with 1p +  zeros on the diagonal followed by N ones and 
n Dλ  is a penalty term ƛ is estimated as

( ) ( )( )2

1

1 n
i

i i i
i

CV w Y g X
n λλ −

=

= −∑                                     (6)

Where igλ
−  is the smoothing spline estimator fitted from the data less the ith data 

Since Σ in model equation (2) is unknown, we assume that Ri, i = 1,2,…, n 
is 2nd˗  order stationary and isotopic process. Then let C(h) and γ (h) be 
covariogram and variogram respectively, where the distance between two 
locations is given by h [15,13] Then

( ) ( )2C h hσ γ= −

( ) ( ) 2, /i j i jR R C z zρ σ   = = −   ∑ , while zi and zj are the spatial 

locations associated with error values Ri and Rj, so it is appropriate to 

estimate ( )hγ  for Σ [16,17]

( )
( )

( )
^ 2

2 /i j
S h

h z z N hγ  = − ∑                 (7)

( ) ( ){ }, :i j i jS h x x x x h= − =∣ ∣ , N (h) is a number of distinct pairs in S (h). 

The characteristics of the estimator (7) can be estimated using Integrated 
square [18], given by

( ) ( ) ( )
1

^
22 {2 2 }

kh

h

ISE h h dhγ σ γ= −∫

Where h1 and hk are the lags [16]. Therefore, since ( )
^
g ⋅ has been estimated 

then 

( )
^ ^

i i iR Y g X= −

Since R(zi), the error at location zi, is unobserved, this quantity must be 
estimated as well. We use the iterative procedure [13]:

Obtain ( )
^
g x , ( )

^
, ng ∈ΛiX i  by means of (4). Then put 

( )1^
R =i  ( )

^

i iY g X−  

Obtain 
( )
( )

1^
hγ  for { }| |, ,i j nh z z i j∈ − ∈Λ  and 

( )2 1^
σ  .

Using (5), obtain ( ) ( ) ( )
^ 1T T T

ig X g x X X m D X Yλ
−

= +  and
( )
( )

1~
,i ng ∈ΛX i .

Set
( ) ( )

( )
2 1^ ~

i i iR Y g X= −  and go to 2. Step 3 then produces 
( )
( )

2~
m x   and 

( )
( )

2~
,m ∈Λi nX i .

Repeat this process to obtain
( )
( )

~ r

g x  and 
( )
( )

~
,

r

i ng ∈ΛX i .

The study selects ϵ > 0, i.e., ϵ = 0.001 and the procedure ends when
( )
( )

~ r

g −x∣
( )

( )
1~

.
r

g x
−

< ∣  

As proposed by [5, 6] R2 is used to assess the performance of predictors, 
given by

 

( ) ( )

( )

2^

1
2

2

1

1

n
i ii

n
ii

g x g x
R

g x g

g

=

=

 −  = −
 − 

∑

∑

Where g  is the mean of g(xi), i=1,…,n.  

Theoretical properties of Estimator

To obtain asymptotic results, we impose the following assumptions on model 
(2)

A1. The random field {Xi,i ϵ Ʌn} is strictly stationary.

A2. The function g (·) is twice differentiable and its matrix of second 
derivatives at x denoted by g"(∙) is continuous at all x ϵ.

A3. The process Ri, i = 1,2,…, n is 2nd order stationary and isotopic, further 

∃  a ϵ > 0 such that ( )2
iE Y ∞+ <ò∣∣  for i = 1,2, … , n 

Theorem 1: Asymptotic Normality

In addition to A1-A3, suppose that { } 1

n
i i= are iid with mean 0 and variance 

σ2In then, for any xi ϵ and 1/ 2 1m
o nk C +≥ for some constant C > 0 then

( ) ( ) ( )( )

( )
( )

^

^
0,1i

d

g g b x
N as n

var g
∞

⋅ − ⋅ +
→ →

 ⋅ 
 

               (8)

Where b (xi) is asymptotic bias [19], given by

( ) ( ) ( ) ( )
^

(i i i ib x E g x g x b x= − =

Proof of Theorem 1:

For m > 1, S (m,t) is a set of spline functions with knots
0 1 1{0 1}kt t t t += = < <…< =  of step functions with jumps at the knots and 

for m ≥ 2 

( ) [ ] ( )2, 0,1 :mS m t s C s x−= ∈

Expressing function in S (m,t) in terms of B-splines for fixed m and t, let

( ) ( )[ ]( ) 1
, 0, , , 1, ,m

i m i i m i m iR x t t t t t x i k k M−
− − +

= − … − = … = +

Where [ti-m, …, ti]f  denote the mth – order divide difference of the function f 
and ti = tmin(max(i,0),ko +1) for any i = 1- M, …, k we assume that 

( )0

1
1 1 0i k i imax h h o k −
≤ ≤ + − =

And 
01/ i k ih min h M≤ ≤ ≤ , where 

01 1,i i i i k ih t t h max h− ≤ ≤= − =  and M > 0 

(predetermined constant) this assumption ensure that 1
0M k h M− < < , which 

is necessary for numerical assumptions

Let Dn (x) be an empirical distribution function of ( )
1

n
i i

x
=  with a positive 

continuous density d(x) this implies ( ) ( ) ( ) ( )
1

'

0

G d R x R x d x dx= ∫ Then

( )

( )

( ) ( )

( )

( ) ( )( ) ( )

^

0 1/ 21/ 2
0^ ^

0

1
/

m
m

E g x o kg x b x
o n k o

k n
var g x var g x

−
− +

 
  +  − = = =
   
   
   

Thus equation (8) follows if
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( ) ( )

( )
( )

^ ^

^
0,1

d

g x E g x
N

g x

 −  
 →

 
 
 

we have

( ) ( ) ( )
^ ^

' 1
,

1

n

k n i i
i

g x E g x R x G x a−

=

 − = = 
 

∑ 

Where ( ) ( )' 1
, /i k n ia R x G R x n−= , the required Lindeberg-Feller conditions, 

it suffices to verify that

( ) ( )
^

2 2
1

1

n

i n i i
i

max a o a o var g x≤ ≤
=

    = =        
∑

we also have

( ) ( ) ( ) ( )2 2 ' 1 ' 1
, ,i k n i i k na n R x G R x R x G R x− −=

Finally, equation (8) follows from the assumption that k0 / n → ∞ hence the 
prove.

Theorem 2

Consistency: From theorem 1, we can establish the asymptotic consistency 

of ( )
^
g ⋅  where for ϵ > 0   

( ) ( ){ }
( )

^

^

2 0
n

MSE g x
lim P g x g x

∞→

 
 
 − > ≤ =


∣ ∣                (9)

but ( ) ( ) ( )
2^ ^ ^

MSE g x var g x bias g x      = +            
 and [ ]

( ) ( ) ( )1

0,1
n o

x
sup D x D x o k −

∈
− =∣ ∣

( ) ( ) ( ) ( ) ( )( )
2^ 1' 1 ,var g x R x G d R x o nh

n
σ −−  = + 

 

( ) ( ) ( ) ( ) ( )
( ) ( )^

!

m m
im i

m
i

f x h x tE g x g x b x o h b x B
m h

 −  − = + = −   
   

Where Bo (x) =1,  

( ) ( )1
0

x

i i iB x iB z dz b−= +∫  and ( )
1

1
0 0

x

i ib i B z dzdx−= ∫∫  is the ith Bernoulli 

number [20].  From equation (9)

( ) ( ){ }
( )

^

^

2n n

MSE g x
lim P g x g x lim

∞ ∞→ →

 
 
 − > ≤


∣ ∣

( ) ( ) ( ) ( )( )
( ) ( ) ( )

2
2

1' 1

2

!

m m
mi i

m
i

n

f x h x tR x G d R x o nh B o h
n m h

lim
∞

σ −−

→

  −
+ + − +  

   ≤


   (10)

As  n→ ∞ the numerator terms in RHS of equation (10) collapse to zero 
therefore

( ) ( ) ( ) ( )( )
( ) ( ) ( )

2
2

1' 1

2 2

! 0 0

m m
mi i

m
i

n

f x h x tR x G q R x o nh B o h
n m h

lim
∞

σ −−

→

  −
+ + − +  

   ≤ = =
 

Hence the prove of equation (9), therefore we conclude that the estimator is 
consistent to the true function g(x) of equation model (2).

Data Description

The study used data from Cooperative Insurance Company’s motor third-
party liability insurance for 2018 and 2019. 6500 policies are included in the 
data. The following policy information was used: the area where the policy 
was purchased, policyholder age, gender, vehicle type, number of claims, 
years of policy ownership, claim amount, and insured cases number. Age is 
categorized into three categorize; Old (50 > years), young (<25 years) and 
Middle age (25-50) (Table 1).

Table 1 shows that there is a very large number of observations has no 

claims in claims dataset where the maximum number of claims made in a 
region were 4 in an observation.

The histogram in (Figure 1) of the observed claims shows that the distribution 
of claims is skewed to the right, therefore there is element of over-dispersion 
in the data due to large number of zeros.

Results and Discussion
A spatial estimation has been applied in many fields to assess the location 
effects on the prediction of observations. Many models have been proposed 
to measure the spatial autocorrelation [21]. We establish the conditions for 
convergence through Monte Carlo Simulation and verify the asymptotic 
properties and show how the estimator perform when applied to real 
insurance data set and interpret the results.

Simulation Results
This section describes the simulation process and the results of the method 
proposed in this research. This study proposed a model proposed by [6,13] 
given by

( ) 1 21, , , 1, ,ij ij ijY sin X R i n j n= + = … = …

Where Yij are the observations and Xij is a saptial process which represents 
the explanatory variables and Rij is the term for spatial effects? The semi-
variogram is estimated as

( )
3

3 | |    0 2 
4 16

hhh hγ = − ∀ < ≤ otherwise ( ) 1  2h hγ = ∀ >

Where h is the distance between 2 locations zi and zj in 2-dimensional space 
Xij is a spatial process and follows a mean 0 and second order stationary 
gaussian process, for this reason we use spectral method to simulate Xij 
given by

( ) ( ) ( )( )
1
2

1

2 1, * 2, *
M

ij
k

X cos w k i w k j r k
M =

 = + + 
 

∑

( ), 1, ,w i k k M= … are iid normally distributed and are independent 
of r(k) iid uniform random variables on [―π, π] as  n → ∞, Xij converges 
to a gaussian ergodic process [17]. The matrix of random errors 

No. of Claims Frequency of 
Observations

Percentage of 
Observations

0 4015 61.8
1 1967 30.3
2 431 6.6
3 71 1.1
4 16 0.2

Table 1. Claim frequency table for the data.

Data  Sample sizes
Method  10 × 10 20 × 20

SAR 0.7483 0.9587
NonPar(Wang 2017) 0.7585 0.9691

Proposed Method 0.8217 0.9962

Table 2. R2 for model 1 over 100 simulations under different sample sizes.

Method LL Proposed 
Method

1st 
iteration

2nd 
iteration

3rd 

iteration
4th 

iteration
R2 0.7125 0.9484 0.9531 0.9543 0.9544 0.9544

Table 3. R2 larger towards 1 the better) for claims data.
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( )211, ,
i

T

n nR R R B= … =   where ( ) ( )( )1 / 0TBB i j Cγ= = − −∑ . 

( )1 211, ,
T

n n= …   1 21, , 1, ,ij i n j n= … = …  are iid normally distributed.
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To measure performance of estimators, we use R2 given by

( ) ( )

( )

1 2

2

2^

1 1
2

2

1 1

1

n n
ij iji j

n n
iji j

g X g X
R

g X g

= =

= =

 −  = −
 − 

∑ ∑

∑ ∑
where g  is the sample mean of g(Xi), i = 1, .., n. The closer R2 to 1 the 
better the performance of the estimators. Comparing the performance of 
the proposed method with the other immediate existing methods such as 
nonparametric spatial models with general correlation structures a method 
proposed by [13] where estimation was based on kernel estimation and the 
nonparametric spatial autoregressive (SAR) method under which R = ρ WR 
+ ϵ proposed by [6].

Table 2 shows the simulation results of R2 values from 100 simulations. We 
can see that R2 for the proposed method is the largest and closer to 1; this 
demonstrates the superior performance of the proposed method.

Analysis for claims data

The study considers the claims data from CIC insurance observed in different 
parts of 42 counties of Kenya to illustrate the performance of the proposed 
method procedures, which exclude the 5 counties from the northern part of 
the country since the information regarding the 5 counties was not available. 
Since we are mainly interested in predicting the claims frequency, the study 
considers a set of 6500 observations data observed from 42 counties. Let 
Yi denote the claim frequency, and Xi = (X1, …., X6) 

T be a vector which 
consists of the following explanatory variables: gender, claim amount, age of 
the policyholder, gender, vehicle age, model of the vehicle and age category 
of the policyholder. By using the following model where, we can predict claim 
frequencies.

Y ( ) ( )( ) ( ) ( ) 2, , 1, ,i i ig Var i nσ= + = Σ = …z X z R z R

Where Y(zi):i = 1, … , n is the observations (claims) in region zi associated with 
independent variable X(zi) in region zi, R(zi) is the unobserved error in region 
zi and g(.) is the estimated function. The observations are from a random 
process observed over a countable collection of spatial regions (county). The 
data at a particular location typically represent the entire region. Claims data 
resides on an irregular lattice, with each site representing an entire county 
[22]. Using R2 to measure the performance of the predictor, R2 is defined as

( ) ( )

( )

2^

1
2

2

1

1

n
i ii

n
ii

Y z Y z

Y
R

Y z

=

=

 −  = −
 − 

∑

∑
From the analysis of the data, the results were presented in the following 
table (3).

From table 3 the R2 of LL (local linear method) without unobserved random 
correlation errors is 0.7125 the proposed method outperforms LL model with 
R2 value of 0.9484. In presence of spatial effects, as the iterations increase 
the performance of the proposed method is significantly better than that of 
the LL. It is observed that R2 increases very little in columns 5 and 6.

Discussion
The construction of the estimator aims at obtaining a robust method for 
the prediction of claims frequencies. The proposed method adopts a 
nonparametric approach where smooth function estimated using smoothing 
spline accounts for the fixed effects.

A random effect (spatial error) was added to the model to improve the 
prediction. From the simulation study, two methods; Nonparametric model 
with SAR error [6] and Nonparametric model with the correlated error, 
which uses kernel in the estimation [13] were compared to the proposed 
method. The results showed that the proposed method has a significantly 
better prediction performance of 0.9962 (99.62 efficiencies) compared 
to the two methods, which have R2 values 0.9587(95.87% efficiency) and 
0.9691(96.91% efficiency), respectively. The proposed method was applied 
to the Cooperative Insurance Company (CIC) claims data-set. The findings 
showed that the proposed model is more efficient with R2 of 0.9544, which is 
closer to 1 (100% efficiency) in predicting the claims frequencies compared 
to the Local Linear fitted model with no account for spatial effects with R2

 
of 0.7125(71.25% efficiency). The proposed method could now be applied 
to other classes of insurance claims due to its efficiency and capability to 
capture the nonlinear effects and spatial effects characterized by claims 
data.

Conclusion
The idea of deriving an appropriate estimator in predicting frequency 
claims in the insurance industry has gained more interest in finance and 
statistical research. Many researchers heavily rely on parametric estimators; 
however, the insurance datasets have some aspect of non-linearity. Hence, 
researchers in statistics are developing nonparametric estimators with 
spatial error to improve the prediction based on existing parametric models. 
The study constructed a spatial nonparametric estimator for predicting 
claim frequencies in motor insurance, and the theoretical properties of the 
estimators were derived. The study established the theoretical properties 
of the proposed estimators under mild conditions. The study found that 
the proposed nonparametric spatial method is more efficient from the 
simulation results and application of the method to claims data with 6500 
observations than the Local Linear fitting models and nonparametric model 
with Spatial Autoregressive error in the prediction of claims frequencies. 
Therefore, based on the results, the proposed method can be applied in 
predicting claims frequencies due to its efficiency and capability to capture 
the nonlinear effects characterized by claims data.

Limitations & Recommendations for 
Further Studies
Some additional exogenous variables may influence claim frequency. For 
example, the environmental factors among other institutional factors. It is 
important to investigate how each of the factors affects the output variable. 
Thus, a more robust spatial estimator for studying the relationship between 
an output variable and input variables may be constructed in subsequent 
studies using the proposed method. The data set used in the study involves 
policies for cars taken by the CIC insurance company. However, in the 
insurance, there are also policies for life insurance. Hence, further studies 
should consider the use of other claims data sets (i.e., for life and property 
claims data sets) in demonstrating the applications of the constructed 
estimator and also consider developing a more efficient nonparametric 
package to map Lattice observations under this proposed method.

Limitations of the Study
The data used in the study is Lattice data (without a coordinate system); 
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therefore, there was difficulty in classifying the claims to a specific area in 
the region (County).
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Appendix
The CIC insurance company did not provide URL link for accessing the data 
instead they provide an excel sheet containing the data.
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