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Abstract
This paper is considred to solve one-dimensional diffusion equation with nonlinear nonlocal boundary conditions. For the interior part of the problem, our discrete methods 
use the Forward time centred space (FTCS-NNC), Dufort–Frankel scheme (DFS-NNC), Backward time centred space (BTCS-NNC), Crank-Nicholson method (CNM-NNC), 
respectively. The integrals in the boundary equations are approximated by the trapezoidal rule. Here nonlinear terms are approximated by Richtmyer’s linearization method. 
The new algorithm are tested on two problems to show the effciency and accuracy of the schemes.
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Introduction

In this paper, we interest to study the numerical solution for the diffusion 
equation in one-dimensional time-dependent

( )
2

= , , 0 < < 1, 0 < ,2
u u

f x t x t T
t x

α
∂ ∂

− ≤
∂ ∂

           (1)

with the initial condition

( ) ( ),0 = , 0 < < 1,u x x xϕ 			                (2)

and the nonlinear nonlocal boundary conditions

( ) ( ) ( ) ( )
1

0
0, = , , , 0 < ,u t p x t u x t dx E t t Tγ + ≤∫          (3)

( ) ( ) ( ) ( )
1

0
1, = , , , 0 < ,u t q x t u x t dx G t t Tγ + ≤∫          (4)

Where f,ϕ,p,q,E and G are known functions, so must be determined the 
function u.

Recently, this kind of nonlocal boundary-value problem with γ=1 has many 
important applications in chemical diffusion, thermoelasticity, heat conduction 
processes, population dynamics, vibration problems, nuclear reactor dynamics, 
biotechnology and mathematical biology, and so forth [1-4] and the references 
theiren. Also, this problem arises in the quasi-static theory of thermoelasticity 
treated by several mathematicians such as Day [5,6], who has shown that the 
entropy per unit volume u(x,t), satisfies:

2

2= , 0 < < 1, 0 < ,u u x t T
t x

α∂ ∂
≤

∂ ∂
		                   (5)

( ) ( ),0 = , 0 1,u x x xϕ ≤ ≤ 			                 (6)

( ) ( )
1

0
0, = , , 0 < ,u t ku x t dx t T≤∫ 		                  (7)

( ) ( )
1

0
1, = , , 0 < ,u t ku x t dx t T≤∫ 		               (8)

where

( ) 12= 1 , = ,kα δ δ
−

+ − 			                 (9)

and

( ) ( )

1/2

0= 3 2 ,
2

B
c

θδ λ γ
λ γ

 
+   + 

			              (10)

λ and γ are the elastic moduli, θ is the reference temperature, c is the 
specific diffusion unit volume, and B is the coefficient of the thermal expansion. 
Dagan [7] describes the quasi-static flexure of a thermoelastic rod of unit 
length. In this case, the entropy u satisfies (5) with the initial condition (6) and 
subject to the nonlocal conditions

( ) ( ) ( )
1

0
0, = , , 0 < ,u t p x u x t dx t T≤∫ 	             (11)

( ) ( ) ( )
1

0
1, = , , 0 < ,u t q x u x t dx t T≤∫ 	             (12)

where

( ) ( ) ( ) ( )2 2= 2 2 3 , = 2 1 3 ,p x x q x xδ δ− − −        (13)

and

( )
212 2 0= 1 , = ,B

cA
θα δ δ

−
+ 			              (14)

A is the flexural rigidity, the constant B is a measure of the cross-coupling 
between thermal and mechanical energy and again, θ0 and c denote the 
reference temperature and specific heat per volume, respectively. The 
detailed derivation of these equations can be found [8]. Friedman [9] and 
Kawohl et al. extended the Day’s result which they generalized the parabolic 
equation in several space variables.

The numerical solution of this problem and its variations has been 
considered in several papers. Ekolin [10] proved the convergence of the 
Crank-Nicolson method by using an energy argument, Morton and Mayers 
[11], and Liu [12] considered the Crank-Nicolson method (θ-method). 
Fairweather, López-Marcos [13] considered the Crank-Nicolson Galerkin 
method, Ang [14] solved the problem by using the Laplace transform, 
Zhi-Zhong Sun [15] used the high order difference scheme and recently, 
Dehghan [16-18] presented different method explicit and implicit, Martin-
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Vaquero et al. [19,20] presented a new method and discussed this method 
with Dehghan, Javidi [21] considered the method of lines (MOL), and 
others [22,23] proposed a general technique for solving the solution in the 
reproducing kernel space.

In this paper we organized our work as follows:

1.	 The forward time centred space with nonlinear nonlocal boundary 
conditions (FTCS-NNBC)

2.	 The Dufort-Frankel scheme with nonlinear nonlocal boundary 
conditions (DFS-NNBC)

3.	 The backward time centred space with nonlinear nonlocal boundary 
conditions (BTCS-NNBC)

4.	 The Crank-Nicholson method with nonlinear nonlocal boundary 
conditions (CNM-NNBC)

5.	 Numerical experiment

6.	 Conclusion

Finite difference schemes

For the numerical solution of the considered problem (1)-(4) we apply 
the finite difference technique. First, we take a positive integers N and M We 
divide the intervals [0,1] and [0,T] into M and N subintervals of equal lengths 
h = 1/M  and k = T/N,  respectively. By ,n

iu  we denote the approximation to 
u  at the ith grid-point and nth

 time step. The Grid point (xi,tn) are given by xi 
= ih, i = 0,1,2,…,M, tn = nk, n= 0,1,2,…,N. 

The notations n
iu , n

if , n
ip , n

iq , En and Gn are used for the finite 
difference approximations of u(xi,tn), f(xi,tn), p(xi,tn), q(xi,tn), E(tn) and G(tn), 
respectively.

The Forward Time Centred space with 
Nonlinear Nonlocal Boundary Conditions 
(FTCS-NNBC)

We can approximate the time derivative by the forward difference 
quotient,and use the second order approximation for the spatial derivative 
of second order in (1) to obtain:

1
1 1

2

2= .
n n n n n

ni i i i i
i

u u u u u f
k h

α
+

− + − − +
+ 

 
		               (15)

This scheme can be written as:

( )1
1 1= 1 2n n n n n

i i i i iu ru r u ru kf+
− ++ − + + 		                (16)

For i = 1,2,…,M-1, n= 0,1,…,N, and r = αk/h2.  

Order of accuracy of the scheme is O(k) + O(h2). We still have to 
determinates two unknowns u0 and uM+1, for this we approximate integrals 
in (3) and (4) numerically by trapezoidal rule (We have chosen this 
approximation since it is of the same, second, order of accuracy in space as 
the methods used for the interior part of the problem):

( ) ( ) ( )11 1 1 1 1
0 0

= 0, = , ,n n n n nu u t p x t u x t dx Eγ+ + + + ++∫
1 1 1 1 1 1 1 1 2

0 0 =1= ( ( ) 2 ( ) ( ) ) ( ),
2

n n M n n n n n
i i i M M

h p u p u p u E O hγ γ γ+ + − + + + + ++ + + +

						                 (17)

( ) ( ) ( )11 1 1 1 1

0
= 1, = , ,n n n n n

Mu u t q x t u x t dx Gγ+ + + + ++∫
1 1 1 1 1 1 1 1 2

0 0 =1= ( ( ) 2 ( ) ( ) ) ( ).
2

n n M n n n n n
i i i M M

h q u q u q u G O hγ γ γ+ + − + + + + ++ + + +

					                                  (18)

Thus, we can write
1 1 1 1 1

0 0 02 ( ) ( )n n n n n
M Mu hp u hp uγ γ+ + + + +− − '

1 1 1 1 1
1 1 1 1= 2 ( ) ... 2 ( ) 2 ,n n n n n

M Mhp u hp u Eγ γ+ + + + +
− −+ + + 	             (19)

1 1 1 1 1
0 0( ) 2 ( )n n n n n

M M Mhq u u hq uγ γ+ + + + +− + −
1 1 1 1 1

1 1 1 1= 2 ( ) ... 2 ( ) 2 .n n n n n
M Mhq u hq u Gγ γ+ + + + +
− −+ + + 	             (20)

By applying the Taylor’s expansion

( ) ( ) ( )( )1 = ....n n n
i i i t

u u k u
γγ γ+ + +

( ) ( )
11

= ...
n n

n n i i
i i

u uu k u
k

γ γ
γ

+
−  −

+ + 
 

( ) ( ) ( )1 1= ...n n n n
i i i iu u u u

γ γ
γ

− ++ − +

Hence to terms of order k,

( ) ( ) ( ) ( )( )11 1 1 ,n n n n
i i i iu u u u

γ γ γ
γ γ

−+ +≈ + − 		                (21)

a result which replace the non-linear unknown ( )1n
iu

γ+  by approximation linear 
in ( )1n

iu +  (the Richtmyer’s linearization method [24]).

Substituting (21) for i=0 and i=M in (19) and (20), we have
1 1 1 1 1 1

0 0 0
1 1 1 1

1 1 1 1
1 1 1

0 0

(2 ( ) ) ( )
= 2 ( ) ... 2 ( )

(1 ) ( ) (1 ) ( ) 2 ,

n n n n n n
M M M

n n n n
M M

n n n n n
M M

h p u u hp u u
hp u hp u

h p u h p u E

γ γ

γ γ

γ γ

γ γ

γ γ

+ − + + − +

+ + + +
− −

+ + +

− −
+ +

+ − + − +

	            (22)

1 1 1 1 1 1
0 0 0

1 1 1 1
1 1 1 1

1 1 1
0 0

( ) (2 ( ) )
= 2 ( ) ... 2 ( )

(1 ) ( ) (1 ) ( ) 2 ,

n n n n n n
M M M

n n n n
M M

n n n n n
M M

hq u u h q u u
hq u hq u

h q u h q u G

γ γ

γ γ

γ γ

γ γ

γ γ

+ − + + − +

+ + + +
− −

+ + +

− + −
+ +

+ − + − +

	              (23)

Hence we have:
1 1 1 1 1

0 1 2
1= (2 ( ) ) ( ) ) ,n n n n n

M M M Mu z h q u z hp u
Y

γ γγ γ+ + − + − − +  	             (24)

1 1 1 1 1
2 0 0 1 0 0

1= (2 ( ) ) ( ) ) ,n n n n n
Mu z h p u z hq u

Y
γ γγ γ+ + − + − − +  	             (25)

where
1 1 1 1

1 1 1 1 1
1 1 1

0 0

= 2 ( ) ... 2 ( )
(1 ) ( ) (1 ) ( ) 2 ,

n n n n
M M

n n n n n
M M

z hp u hp u
h p u h p u E

γ γ

γ γγ γ

+ + + +
− −

+ + +

+ +

+ − + − +
	             (26)

1 1 1 1
2 1 1 1 1

1 1 1
0 0

= 2 ( ) ... 2 ( )
(1 ) ( ) (1 ) ( ) 2 ,

n n n n
M M

n n n n n
M M

z hq u hq u
h q u h q u G

γ γ

γ γγ γ

+ + + +
− −

+ + +

+ +
+ − + − +

	                (27)

and

1 1 1 1
0 0

2 2 1 1 1 1
0 0

= (2 ( ) )(2 ( ) )
( ) ( ) 0

n n n n
M M
n n n n

M M

Y h q u h p u
h q u p u

γ γ

γ γ

γ γ
γ

+ − + −

+ − + −

− −
− ≠

		               (28)

(28) is true for sufficiently small h.a.

The Dufort–Frankel scheme with 
Nonlinear Nonlocal Boundary Conditions 
(DFS-NNBC)

Richardson method is a Central Time Central Space (CTCS) scheme for 
parabolic type Dufort–Frankel scheme diffusion equations. The application 
of central differencing for time and space derivative in a straightforward 
manner to equation (1) will yield

1 1
1 1

2

2 = ,
2

n n n n n
ni i i i i

i
u u u u u f

k h
α

+ −
+ −− − +

− 		                (29)

This is known as the Richardson method. A stability analysis would show 
that it is unconditionally unstable, no matter how small k is. Thus, it is of no 
practical use.

The Richardson method can be modified to produce a stable algorithm. 
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we have
( ) ( ) ( )( )( )(

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )

11 1 1
0 0 0 0 0

11 1 1
=1

11 1 1

= 1
2

1

1 ,
2

n n n n n

M n n n n
i i i i i

n n n n n
M M M M

hu p u u u

h p u u u

h p u u u E

γ γ

γ γ

γ γ

γ γ

γ γ

γ γ

−+ + +

−− + +

−+ + +

+ −

+ + −

+ + − +

                       (36)

( ) ( ) ( )( )( )(
( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

11 1 1
0 0 0 0

11 1 1
=1

11 1 1

= 1
2

1

1 .
2

n n n n n
M

M n n n n
i i i i i

n n n n n
M M M M

hu q u u u

h q u u u

h q u u u G

γ γ

γ γ

γ γ

γ γ

γ γ

γ γ

−+ + +

−− + +

−+ + +

+ −

+ −

+ + − +

	                (37)

Thus, we can write (36) and (37) as follows

( )( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1 11 1 1 1 1
0 0 0 =1

11 1

1 1 1
0 0 =1

1 1

2 2

= 1 2 1

1 2 ,

n n n M n n n
i i i i

n n n
M M M

n n M n n
i i i

n n n
M M

hp u u h p u u

hp u u

hp u h p u

hp u E

γ γ

γ

γ γ

γ

γ γ

γ

γ γ

γ

− −+ + − + +

−+ +

+ − +

+ +

− +

+

− + −

+ − −

	             (38)

( ) ( ) ( )
( )( )( )

( ) ( ) ( ) ( )
( ) ( )

1 11 1 1 1 1
0 0 0 =1

11 1

1 1 1
0 0 =1

1 1

2

2

= 1 2 1

1 2 ,

n n n M n n n
i i i i

n n n
M M M

n n M n n
i i i

n n n
M M

hq u u h q u u

hq u u

hq u h q u

hq u G

γ γ

γ

γ γ

γ

γ γ

γ

γ γ

γ

− −+ + − + +

−+ +

+ − +

+ +

+

+ −

− + −

+ − −

	             (39)

then, we have
1 1 1 1 1

0 0 1 1 2 2 1 1... = ,n n n n n n n n n n n
M M M M Ma u a u a u a u a u L+ + + + +
− −+ + + + +       (40)

where

( )
( )
( )

11
0 0 0

11

11

= 2

=

= 2 = 1,2, , 1

n n n

n n n
M M M

n n n
i i i

a hp u

a hp u

a hp u i M

γ

γ

γ

γ

γ

γ

−+

−+

−+

 −




 −




        (41)

and

( ) ( ) ( ) ( )
( ) ( )

1 1 1
0 0 =1

1

= 1 2 1

1 ,

n n n M n n
M i i i

n n
M M

L hp u h p u

hp u

γ γ

γ

γ γ

γ

+ − +

+

− + −

+ −
         (42)

and also
1 1 1 1 1

0 0 1 1 2 2 1 1... = ,n n n n n n n n n n n
M M M M Mb u b u b u b u b u K+ + + + +
− −+ + + + +        (43)

where

( )
( )
( )

11
0 0 0

11

11

=

= 2

= 2 = 1,2, , 1,

n n n

n n n
M M M

n n n
i i i

b hq u

b hq u

b hq u i M

γ

γ

γ

γ

γ

γ

−+

−+

−+



 −

 −




	               (44)

and

( ) ( ) ( ) ( )
( ) ( )

1 1 1
0 0 =1

1

= 1 2 1

1 ,

n n n M n n
M i i i

n n
M M

K hq u h q u

hq u

γ γ

γ

γ γ

γ

+ − +

+

− + −

+ −
	             (45)

This is achieved by replacing n
iu  on the right-hand side with the time-average 

of previous and current time values at n-1 and n+1. This new formulation is 
called Dufort–Frankel scheme and is given by

1 1 1 1

1 12 2 =
2 2

n n n n
n n ni i i i
i i i

u u u uu u f
k h

α+ − − +

+ −

  − +
− − +  

  
or

1 1 1 1
1 1= 2 2 ,n n n n n n n

i i i i i i iu u r u u u u kf+ − − +
+ − + − + + +  	                (30)

after some rearrangement, we get:

( ) ( )
( )

1
1 11

1 2 2 2
= ,

1 2

n n n n
i i i in

i

r u r u u kf
u

r

−
+ −+

− + + +

+
	                                  (31)

for i = 1,2,...,M-1, n = 0,1,…,N, and r = αk/h2.  

Order of accuracy of the scheme is ( ) ( )
2

2 2 .kO k O h O
h

  + +      
 The 

scheme is not consistent in the classical sense, but it is if we assume that the 

ratio k
h

 converge to zero. An optimal choice of k as a function of h to have a 

high order scheme is to choose k of the same order as h2. In this case, the 
scheme is of order 2 in space. We still have to determinates two unknowns u0 
and um+1 for this we approximate integrals in (3) and (4) in the same way as in 
FTCS method.

Note that the Dufort-Frankel method is a two-level method since the 
stencil contains values of u at two time levels other than the current level  n. 
Consequently, to start the computation, values of u at n and  n-1 are required. 
Therefore, either two sets of initial data must be available or from a practical 
point of view, a one-step method may be used as a starter to generate additional 
data. We can use the FTCS method (15) with n=0 to find approximate values 
for n

iu ,i=1,2,…,M-1 at the first time level, from the known values 0
iu . Then 

(31) with n=2,…,N, is used to compute approximations to u(xi,tn) This scheme 
is explicit and can be shown to be unconditionally stable by the von Neumann 
stability analysis.

The Backward Time Centred Space with 
Nonlinear Nonlocal Boundary Conditions 
(BTCS-NNBC)

Using the the classical backward time centred space finite difference 
scheme to approximate the derivative in eqution (1), we get

1 1 1 1
11 1

2

2 = ,
n n n n n

ni i i i i
i

u u u u u f
k h

α
+ + + +

+− + − − +
−  

 
	              (32)

and after some rearrangement, the equation (29) becomes
1 1 1 1

1 1(1 2 ) = ,n n n n n
i i i i iru r u ru u kf+ + + +
− +− + + − + 		                (33)

for i = 1,2,…,M,-1, n = 0,1,…,N, and r = αk/h2. 
Order of accuracy of this scheme is O(k) + O(h2)

There are M-1 linear equations from (37) in M+1 unknowns u0,u1,…
um. In order to solve for unknowns, we need two more equations. So, let us 
formally approximate integrals in (3) and (4) numerically by the trapezoidal 
numerical integration rule (the BTCS scheme is second-order accurate with 
respect to the space variable) :

( ) ( ) ( )1 1 1 1 1 1
0 0

1 1 1 1 1 1 1 1 2
0 0 =1

= 0, = , ,

= ( ( ) 2 ( ) ( ) ) ( ),
2

n n n n n

n n M n n n n n
i i i M M

u u t p x t u x t dx E

h p u p u p u E o h

γ

γ γ γ

+ + + + +

+ + − + + + + +

+

+ + + +
         (34)

( ) ( ) ( )1 1 1 1 1 1
0

1 1 1 1 1 1 1 1 2
0 0 =1

= 1, = , ,

= ( ( ) 2 ( ) ( ) ) ( ).
2

n n n n n
M

n n M n n n n n
i i i M M

u u t q x t u x t dx G

h q u q u q u G o h

γ

γ γ γ

+ + + + +

+ + − + + + + +

+

+ + + +
         (35)

By applying the Richtmyer’s linearization method (21) in (34) and (35), 
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for i = 1,2,…,M-1, n = 0,1,…,N, and r = αk/h2. 

Order of accuracy of the scheme is O(k2) + O(h2)

Crank-Nicholson finite difference technique is second-order accurate 
with respect to the space variable, so the integrals in the boundary 
conditions (3) and (4) will be approximated in the same way as in the BTCS 
method. Combining (41), (44), with (52) yields an (M+1) × (M+1) linear 
system of equations. We write the system in the matrix form

1 1 1= ,n n nA U B+ + + 				                (53)

which

( ) ( )

0 1 2 3 2 1

1

0 1 2 2 1 1 1

1 0 0
2 2

0 1= ,2 2
0

0 1
2 2

n n n n n n n
M M M

n

n n n n n n
M M M M M

a a a a a a a
r rr

r rrA

r rr

b b b b b b

− −

+

− − + × +

 
 
 − + −
 
 
 − + −
 
 
 
 − + − 
 
 



 

   

 

	

						                  (54)

( ) ( ) ( ) ( )( )
( )

( )

( ) ( ) ( ) ( )( )
( )

1 1 1 1 1
0 0 =1

1
0 1 2 1 1

1

1
2 1 1 1

1 1 1 1 1
0 0 =1

1 1

1 2 2

1 ( )
2 2 2

= ,

1 ( )
2 2 2

1 2 2

n n M n n n n n
i i i M M

n n n n n

n

n n n n n
M M M M M

n n M n n n n n
i i i M M

M

h p u p u p u E

r r ku r u u f f

B
r r ku r u u f f

h q u q u q u G

γ γ γ

γ γ γ

γ

γ

+ − + + +

+

+

+
− − − −

+ − + + +

+ ×

 − + + − 
 
 + − + + +
 
 
 
 + − + + + 
 
 − + + −
 



						                 (55)
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

				                (56)

where 0 ,na  1 2 1, ,..., ,n n n n
M Ma a a a−  and 0 1 2 1, , ,..., ,n n n n n

M Mb b b b b−  

are the coefficients in (41) and (44), respectively.

Theorem 2 The CNM scheme has a unique solution for sufficiently 
small h.

Proof. It is easy to see that |1+r|>|r| the rest is obtained by following the 
same procedure done in establishing the proof of theorem 1.

Numerical experiments

To test the above algorithms described above, we use two examples 
with known analytical solutions as follows:

Example 1: We consider the following problem (Test given in paper [25] 
they used a fourth-order accurate difference scheme [26-28])

( )
( )

22

32

2 1
= , 0 < < 1, 0 < ,

1

x tu u x t T
t x t

− + +∂ ∂
− ≤

∂ ∂ +
	            (57)

subject to the initial condition

( ) 2,0 = , 0 < 1,u x x x≤ 			             (58)

and the nonlinear nonlocal boundary conditions

Combining (41), (44), with (33) yields an (M+1) × (M+1) linear system 
of equations. We write the system in the matrix form

1 1 1= ,n n nA U B+ + + 				                 (46)

which

( ) ( )

0 1 2 3 2 1

1

0 1 2 2 1 1 1

1 2 0 0
0 1 2

= ,
0

0 1 2

n n n n n n n
M M M

n

n n n n n n
M M M M M

a a a a a a a
r r r

r r r
A

r r r
b b b b b b

− −

+

− − + × +

 
 
− + − 
 − + −
 
 
 − + −
  
 



 

   

 

						                 (47)
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( ) ( ) ( ) ( )( )
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1 1 1 1 1
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+
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					              	            (49)

where 0 ,na  1 2 1, ,..., ,n n n n
M Ma a a a−  and 0 1 2 1, , ,..., ,n n n n n

M Mb b b b b−  are the 

coefficients in (41) and (44), respectively.

Theorem 1: The BTCS scheme has a unique solution for sufficiently 
small h.

Proof. It is easy to see that |1+2r|>|2r|, the matrix (47) is diagonally 
dominant (thus it is non singular), if

1

0
=1 =0

| |> | | and | |> | |
M M

n n n n
i M i

i i
a a b b

−

∑ ∑
i.e

( ) ( )1 11 1

=0 =0
| |< 1 and | |< 1

M M
n n n n

i i i i i i
i i

h p u h q u
γ γ

γω γω
− −+ +∑ ∑  

						                  (50)

Where ω0=ωm=1/2, ωi=1, i=1,…,M-1. As (50) is true for sufficiently 
small h, the existence and uniqueness of the solution of BTCS scheme are 
proved.

The Crank-Nicholson Method with Nonlinear Nonlocal 
Boundary Conditions (CNM-NNBC)

To get abetter approximation for u
t

∂
∂

, we give the Crank-Nicholson 

scheme to approximate equation (1), then we have :

( ) ( )( )
( )

1
1 1 1

1 1 1 12

1

2 2
2

1= .
2

n n
n n n n n ni i
i i i i i i

n n
i i

u u u u u u u u
k h

f f

α+
+ + +

− + − +

+

−
− − + + − +

+
          (51)

and after some rearrangement, the equation (1) becomes

( )

1 1 1
1 1

1
1 1

(1 )
2 2

= 1 ( ).
2 2 2

n n n
i i i

n n n n n
i i i i i

r ru r u u

r r ku r u u f f

+ + +
− +

+
− +

− + + −

+ − + + +
	            (52)
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( ) ( )
( )

1 2
40

10, = , , 0 < ,
6 1

u t xu x t dx t T
t

− ≤
+∫ 	            (59)

( ) ( )
( )

21 2
40

6 12 51, = , , 0 < ,
6 1
x tu t xu x t dx t T

t
+ +

+ ≤
+∫ 	            (60)

The functions f,ϕ,p,q,G and E are chosen so that the function

( )
2

, = .
1

xu x t
t

 
 + 

				               (61)

 is the exact solution solution of the problem (1)-(4)
In Tables 1 and 2 we present results with h=0.05, 0.005 and r=0.4 

using the finite difference formulate discussed above together with the 
results from [2] for x=0.1 and t=0.01, 0.02, 0.03,…0.1.. Table 3 and Table 4 
gives the maximum errors of the numerical solutions experimental order of 
convergence. The maximum error is defined as follows

0 0
( , ) = = { | ( , ) |},max max k

hk i k i
k N i M

Er h k u u u x t u∞
≤ ≤ ≤ ≤

− − 

and the experiment order convergence is calculated using the formula:
1 1

1

ln( ( , ) / ( , ))= .
ln( / )
i i i i

i i

Er h k Er h korder
h h

− −

−

Example 2: The second test example to be solved is

( ) ( ) ( )
2

2
2 = 1 exp cos , 0 < < 1, 0 < ,u u t x x t T

t x
π π∂ ∂

− + ≤
∂ ∂    (62)

with the initial condition

( ) ( ),0 = cos , 0 < < 1,u x x xπ 			                (63)

and the nonlinear nonlocal boundary conditions

( ) ( ) ( ) ( )
1 3

0
0, = sin , exp , 0 < ,u t x u x t dx t t Tπ + ≤∫        (64)

ti exact FTCS DFS BTCS CNM results from [2]
.01  0.0098029  0.0103508  0.0103390  0.0103547  0.0103523  0.0093 
.02  0.0096116  0.0103461  0.0103425  0.0103573  0.0103515  0.0091 
.03  0.0094259  0.0102447  0.0102440  0.0102646  0.0102545  0.0090 
...  ...  ...  ...  ...  ...  ... 
.1  0.0082644  0.0091799  0.0091850  0.0092375  0.0092086  0.0079 

Table 1. Some numerical results at x=0.1 with h=0.05 for example 1.

ti exact FTCS DFS BTCS CNM results from [2]
.01  0.0098029  0.0098085  0.0098085  0.0098086  0.0098085  0.0098 
.02  0.0096116  0.00961190  0.0096190  0.0096192  0.0096191  0.0096 
.03  0.0094259  0.0094341  0.0094341  0.0094343  0.0094342  0.0094 
...  ...  ...  ...  ...  ...  ... 
.1  0.0082644  0.0082736  0.0082736  0.0082742  0.0082739  0.0083 

Table 2. Some numerical results at x=0.1 with h=0.005 for example 1.

Table 3. The maximum errors and experiment order of convergence for example 1.

M N FTCS order BTCS order
 40 2.4·10-3   2.99×10-3  

 160  6.08·10-4 1.984 7.41·10-4  2.015 
 640  1.52·10-4  1.995  1.84·10-4  2.004 
 2560  3.81·10-5  1.998  4.62·10-5  1.999 

Table 4. The maximum errors and experiment order of convergence for example 1.

M N CNM order M N DFS order
 40 2.68·10-3    4  16  1.77·10-3  
 80  6.70·10-4  2.003  8  64  4.51·10-4  1.971 

 160  1.67·10-4  2.000  16  256 1.130·10-4   1.996 
 320 4.18·10-5  2.000  32  1024  2.82·10-5  1.999 

ti exact DFS FTCS BTCS CNM
.01  0.96061479  0.96074288  0.96074308  0.96074404  0.96074352 
.02  0.97026913  0.97046058  0.97046112  0.97046570  0.97046320 
.03  0.98002050  0.98025235  0.98025315  0.98026012  0.98025629 
...  ...  ...  ...  ...  ... 
.1  1.05108000  1.05140348  1.05140505  1.05141906  1.05141129 

Table 5. Some numerical results at x=0.1 with h=0.05 for example 2.

Table 6. Some numerical results at x=0.1 with h=0.05 for example 2.

ti

exact FTCS DFS BTCS CNM
.01  0.96061479  0.96061606  0.96061606  0.96061612  0.96061609 
.02  0.97026913  0.97027103  0.97027104  0.97027113  0.97027108 
.03  0.98002050  0.98002280  0.98002282  0.98002892  098002286 
...  ...  ...  ...  ...  ... 
.1  1.05108000  1.05108323  1.05108325  1.05108340  1.05108331 
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( ) ( ) ( ) ( )
1 3

0
1, = sin , exp , 0 < .u t x u x t dx t t Tπ − ≤∫       (65)

The analytic solution is

( ) ( ) ( ), = cos exp .u x t x tπ 	  	                                (66)

In Tables 5 and 6 we present results with h=0.05, 0.005 and r=0.4 using 
the finite difference formulate discussed above for x=0.1 and t=0.01, 0.02, 
0.03,…, 0.1. Table 7 gives the amount of CPU-time used, in seconds, for the 
computation on an Intel Core i3 with 2.1 GHz computer.

Conclusion

In this paper new techniques were applied to the one-dimensional 
diffusion equation with nonlinear nonlocal boundary conditions. The 
numerical results obtained by using the methods described in this article give 
acceptable results and suggests convergence to the exact solution when h 
goes to zero. The FTCS method is explicit and require less computational 
time than the other implicit schemes (Table 7), but the disadvantage of this 

discretization is the strict stability criterion 
10 <
2

r ≤ . The finite difference 

techniques proposed in this paper can easily be extended to the similar two 
and multi-dimensional problems.
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