# A Curious Connection Between Fermat's Number and Multiple Factoriangular Numbers 

Swati Bisht*, Dr. Anand Singh Uniyal<br>Govt. P.G. College Uttarakhand, India


#### Abstract

In the seventeenth century Fermat defined a sequence of numbers $F n=22 n+1$ for $n \geq 0$ known as Fermat's number. If Fn happens to be prime then Fn is called Fermat prime. All the Fermat's number are of the form $n!k+\Sigma n k$ for some fixed value of $k$ and $n$. Further we will prove that after F4 no other Fermat prime exist upto 1050 .


Keywords: Fermat's Number • Prime Number • Multiple Factoriangular Numbers • Fermat Prime

## Introduction

Fermat Number: A positive number of the form $F_{n}=2^{2 n}+1$ where $n$ is nonnegative integer.

First few Fermat's number are3, 5, 17, 257, 65537...
Pierre de Fermat conjectured that all numbers
(1.1) $F_{n}=2^{2 n}+1$ for $m=0,1,2, \ldots$

Are prime. Nowadays we know that the first five members of this sequence are prime and that (see [2])
(1.2) $\mathrm{F}_{\mathrm{n}}$ is composite for $5 \leq \mathrm{m} \leq 32$.

The status of $\mathrm{F}_{33}$ is for the time being unknown, i.e., we do not know yet whether it is prime or composite [1,2].

The numbers $F_{n}$ are called Fermat numbers. If $F_{n}$ is prime, we say that it is a Fermat prime.

Fermat numbers were most likely a mathematical interest before 1796 . When C. F. Gauss mentioned that there is a remarkable relation between the Euclidean construction (i.e., by ruler and compass) of regular polygons and the Fermat numbers, interest in the Fermat primes skyrocketed. In particular, he proved that if the number of sides of a regular polygonal shape is of the form $2^{\mathrm{k}} \mathrm{F}_{\mathrm{m} 1}$. $F_{m r}$, where $k \geq 0, r \geq 0$, where $F_{m i}$ are distinct Fermat primes, then this polygonal shape can be made by using compass ruler. The converse statement was proved later by Wantzel in $[3,4]$.

There exist many necessary and sufficient conditions concerning the primality of
$F_{n}$. For instance, the number $F_{n}(n>0)$ is a prime if and only if it can be written as a sum of two squares in essentially only one way, namely $F_{n}=\left(2^{2 n-1}\right)^{2}+1^{2}$.
Recall also further necessary and sufficient conditions: the well-known Pepin's test, Wilson's Theorem, Lucas's Theorem for primality, etc., see [4].
Multiple Factoriangular number [5] : A generalization of Factoriangular number is known as multiple Factoriangular numbers and are defined as
$F_{t}(n, k)=(n!)^{k}+\sum n^{k}$
Where $T_{n}(k)=\Sigma n^{k}=1^{k}+2^{k} \ldots+n^{k}$.

[^0]Table 1. A connection between multiple Factoriangular numbers and Fermat number.

| N | $\mathrm{F}_{\mathrm{t}}\left(\mathbf{2 , 2}{ }^{\text {n- }} \mathbf{1}\right)$ | Prime factorization of $F_{t}(n, 15)$ | Number of digits | Sum of squares of prime, integer, natural numbers |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 3 | Prime | 1 |  |
| 1 | 5 | Prime | 1 | $2^{2}+1^{2}$ |
| 2 | 17 | Prime | 2 | $4^{2}+1^{2}$ |
| 3 | 257 | Prime | 3 | $16^{2}+1^{2}$ |
| 4 | 65537 | Prime | 5 | $256^{2}+1^{2}$ |
| 5 | 4294967297 | $641 \times 6700417$ | 10 | $65536^{2}+1^{2}$ |
| 6 | $\begin{aligned} & 18446744 \\ & 073709 \\ & 551617 \end{aligned}$ | $\begin{aligned} & 274177 \times 67 \\ & 280421310721 \end{aligned}$ | 20 | $\begin{aligned} & 4046803256^{2}+1438 \\ & 793759^{2} \end{aligned}$ |
| 7 | $\begin{aligned} & 340282366 \\ & 920938 \\ & 463463 \\ & 374607 \\ & 431768 \\ & 211457 \end{aligned}$ | $\begin{aligned} & 59649589127 \\ & 497217 \times 5704 \\ & 689200685129 \\ & 054721 \end{aligned}$ | 39 | $\begin{aligned} & 18446744073709 \\ & 551616^{2}+1^{2} \end{aligned}$ |
| 8 | $\begin{aligned} & 115792 \\ & 089237 \\ & 316195 \\ & 423570 \\ & 985008 \\ & 687907 \\ & 853269 \\ & 984665 \\ & 640564 \\ & 039457 \\ & 584007 \\ & 913129 \\ & 639937 \end{aligned}$ | $\begin{aligned} & 238926361 \\ & 552897 \times 93 \\ & 461639715357 \\ & 977769163558 \\ & 199606896584 \\ & 051237541638 \\ & 188580280321 \end{aligned}$ | 78 | $\begin{aligned} & 339840244399005 \\ & 511779394711120340 \\ & 266111^{2}+17340632 \\ & 172455487023 \\ & 654788790090 \\ & 010704^{2} \end{aligned}$ |

In this paper, we establish a connection between multiple Factoriangular numbers and Fermat number Table 1.

By the common observation we see that the sequence of number so formed is well known Fermat Number Sequence and it follow the properties described in $[2,4]$.
Now
$F_{t}\left(2,2^{n}-1\right)=(2!)^{2 n-1}+\Sigma 2^{2 n-1}=2^{2 n}+1$.
Corollary: All the Fermat prime are multiple Factoriangular primes.

## Conclusion

We end up with the conclusion that the only primes we get in different sequences of multiple Factoriangular numbers till $10^{50}$ are the Fermat Prime $F_{0}, F_{1}, F_{2}, F_{3}, F_{4}$. Also Sequence of Fermat Number are a special case of multiple Factoriangular number by fixing $\mathrm{n}=2, \mathrm{k}=2^{\mathrm{n}}-1$.

## References

1. Burton DM. "Elementary Number Theory, fourth edition." McGraw-Hill, New York (1998).
2. Crandall Richard E, Mayer Ernst W, Papadopoulos Jason S. "The twentyfourth Fermat number is composite." J Math Comp.
3. Křížek Michal, Chleboun Jan. "A note on factorization of the Fermat numbers and their factors of the form $3 \mathrm{~h} 2^{n}+1$." Mathmetica Bohemica. 119(1994): 437-445.
4. Křížek Michal, Luca Florian. "17 Lectures on Fermat Numbers. From Number Theory to Geometry." Springer, New York (2001).
5. Niven Ivan, Zuckerman Herbert S. "An Introduction to the Theory of Numbers, fifth edition." John Wiley and Sons, New York (1991).

How to cite this article: Swati Bisht, Dr. Anand Singh Uniyal. "A Curious Connection Between Fermat's Number and Multiple Factoriangular Numbers." J Appl Computat Math 9(2021): 485.


[^0]:    *Address for Correspondence: Swati Bisht, Govt. P.G. College Uttarakhand, India, Tel: 8630337677 E-mail:bisht.swati22@gmail.com; bisht.swati273@gmail.com

    Copyright: © 2021 Bisht S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

    Received 01 September 2021 ; Accepted 15 September 2021; Published 23 September 2021

