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Abstract

This article explains how to determine appropriate furrow length and flow rate for furrow irrigation system that is accurate and simple to use 
in semi-arid climates. The experiment was carried out from April to November 2019 and April to November 2021. Cotton was grown in Middle 
Awash, Ethiopia, thus field tests were conducted there. The yield and water productivity were significantly affected by the interaction of 
furrow length and inflow rate. Furrow length of 50 m combined with (1.2 l/s) inflow rate for 35.6 minutes produced the highest water 
application efficiency (65.0 %), water productivity (1.37 kg/m3), and lint yield (6.86 t/ha). The lowest water application efficiency (38.3 %), with 
inflow rate (1.6 l/s) for 9.75 minutes, and water productivity (0.85 kg/m3) were achieved from 10 m furrow length.
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Introduction
Surface irrigation, in which water is dispersed over the field via 

overland flow, is the most common type of water application to 
agricultural lands. Because of its inexpensive equipment and energy 
costs, furrow irrigation is a popular surface irrigation method [1]. 
Furrow irrigation is the finest technique of surface irrigation because it 
provides adequate aeration in the root zone [2]. Despite its 
widespread use, the system has low irrigation efficiency and 
uniformities, which can lead to lower crop yields [3]. In surface 
irrigation, water losses might amount to as much as 40% of the entire 
water supply, this low efficiency may have occurred as a result of 
inadequate design and management [4]. Various management 
strategies and field layouts can be adopted to improve the irrigation 
efficiency and uniformity of a surface irrigation system during an 
evaluation.

The selection of an intake flow rate (Qmax) that maximizes 
application efficiency (Ea) is the most important challenge in the 
design of surface irrigation systems. According to the reports of inflow 
rate and cut-off time are the most effective parameters of furrow 
irrigation design. Morris, et al. suggested that inflow rate of the range 
of 2 to 7 L/s and cut-off time from 50 to 300 min were suitable for the 
best performance [5]. According to, slope, length, and cross-section 
are all essential geometrical factors for performance evaluation. With

the correct field geometry, you may boost irrigation application 
efficiency by up to 26.7 % [6,7].

Efficient application and distribution of water by furrow irrigation is 
dependent on furrow parameters such as flow rate, soil textural class, 
field slope, soil infiltration characteristics, roughness coefficient, and 
irrigation management. To address these issues, the first priority is to 
improve irrigation water management. There is limited quantitative 
data on the Amibara irrigation scheme's system performance and 
water management. Therefore, the objective of this study was to 
generate information on furrow variables specifically flow rate and 
furrow length and their combination to enhance irrigation efficiency 
for cotton production.

Materials and Methods

Description of study area

The study site was Middle Awash, were Agricultural Research 
Center, in Ethiopia's Awash River Valley, where there is a severe 
need for judicious water use and productive agriculture, particularly 
cotton, wheat, maize and onion cultivation. The research center is 
740 meters above sea level and is located at 9° 16' 8" latitude and 
40°9' 41" longitude. The area is classified as semi-arid due to its 
average annual rainfall of 590 mm and high evaporation rate of 2680 
mm per annual. The average minimum and maximum temperatures
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are 19°C and 40.8°C respectively. The gradients are usually 
between 1-2%.

Treatment arrangement

Furrow length and irrigation water inflow rate are two variables in 
the experiment. The experiment was set up using a split plot in

randomized complete block design. In the main plots, three levels of 
furrow length were assigned, and three levels of inflow rate were 
assigned in sub plots. Treatments were allocated to each plot at 
random in three blocks, and each block served as a replication (Table 
1).

No Treatment arrangement

Main plot furrow length (m) Sub plot flow rate Qmax (%) Flow rate (Qmax) (l/s)

1 10 50 0.8

2 30 75 1.2

3 50 100 1.6

Table 1. Treatment arrangement.

Design of surface irrigation system

The volume balance model was chosen for this investigation 
because it has been shown to be accurate, requires little data, and 
relies on few assumptions. The volume balance model posits that 
water entering the field will travel a distance, X, toward the field’s 
lower end at any given time (t). The inflow of water into the furrows at 
the field's entrance, Qo, is assumed to be constant, such that at time t, 
the product of Qo and t equals the volume of water on the soil 
surface, Vy (t), plus the volume infiltrated, Vz (t), both of which are 
time dependent. The factors employed in the mathematical models 
representing the complete process of surface irrigation to increase 
irrigation efficiency include field size, field slope, flow rate, cut-off 
time, soil-infiltration characteristics, and flow resistance. Advance 
time, recession time, infiltrated depths, and accompanying irrigation 
efficiencies and uniformities are all determined by interactions 
between the variables. The volume balance equation is as follows.

Ā is the average area of the furrow shape, Wf is the furrow width, 
Ao is the cross-sectional flow area at the field entrance, y is the 
surface shape parameter, z (s,t) is the infiltrated volume per unit 
length throughout the advance length, and s is the distance travelled 
by the advancing front.

Where σz is the sub-surface shape parameter. The following two 
assumptions are applied to the volume balance model

In a furrow a simple power function can be employed to describe 
the waterfront's trajectory

Where x is the distance that the front has advanced at time t, and 
r, and P are empirically fitted parameters.

The infiltration function has a Kostiakov-Lewis characteristic form

Where Z is the volume of infiltrating water per unit length, τ denotes 
the opportunity time, fo denotes the basic intake rate in terms of 
volume per unit length per unit time, and k and τ denote empirically 
fitted parameters. The volume balancing model can be stated as 
follows if these two assumptions in the Lewis-Milne equation are used 
[8].

where,
Qo inflow per furrow at the upstream end of the field ( m3/min) 

t=Time from the start of inflow (min)
σy =Surface flow shape factor from 0.77-0.80
Ao=The flow area at the flow’s upstream end at time tx (m2) 
x=The distance from the inlet that the advancing front has travelled
in tx minutes
σz=Subsurface shape factor
f0=Basic infiltration rate
k=Empirical parameters (m2/min/m)
r=Power advance
a=Empirical coefficient

For determining parameters ‘k’ and ‘α’ of the infiltration function can 
be solved knowing the advance times corresponding to two locations 
as follows [9].

where,

α empirical coefficients 

VL=Volume of water at the end of the field 

V0.5L=Volume of water at the mid of the field 

tL=The advance time at the end of the field
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t0.5L=The advance time at the mid of the field

Where σy is the subsurface water profile shape factor and σy is the 
surface water profile shape factor.

The maximum non-erosive flow rate was calculated using the 
method below, which took into account the farm's slope (furrow 
slope) and soil type [10].

α coefficient which depend on soil texture (soil type) Qmax maximum non 

erosive flow rate (lit/sec)

β coefficient which depend on soil texture (soil type) S Furrow slope (%) 

The relationship between the depth of water in the furrow and the 
matching top width was determined using the furrow geometry data. 
To approximate this relationship, we used Equation 10. The
parameters α1, α2 can be determined by fitting data to the equation 
11.

Where B denotes the top width of the water in the furrow, y
denotes the depth of the water in the furrow, and α1 and α2 are the 
top width factor parameters.

The wetted perimeter factor parameters γ1 and γ2 can be 
calculated using the formula below.

Where WP is the Wetted Perimeter of the furrow

Parameter data for the advance function is needed to improve 
furrow irrigation performance [11].

The application efficiency (Ea) is computed by dividing the volume 
of water necessary to fill the specified depth of water in the soil by the 
volume of water delivered to the furrow.

tco is the cut-off time in minutes, and Zreq is the needed depth in 
meters to be filled.

Water distribution efficiency (DU)

The ratio of the smallest accumulating depths in the distribution to 
the average depths of the entire distribution is commonly referred to 
as distribution uniformity [12].

Inflow time (T)

To apply the greatest depth of application water to the test 
(optimal) furrow and its buffer furrows with the given optimal flow rate, 
the time of cutoff was computed as follows [13].

T=Inflow time of cutoff (min),

L=Furrow length (m),

W=Furrow spacing (m),

Fg=Gross depth of application (mm), 

Qo=Flow rate (l/s).
The flow rate in the 90° V-notch was determined by using the 

equation developed by Shen.

Q=flow rate in the Parshall flume 

Ce=Coefficient of discharge

The height measured with respect to the vertex of the notch, cm

Molden defined water productivity as the physical mass of 
production or the economic value of production measured against 
gross inflow, net inflow, depleted water, process depleted water, or 
available water.

Estimation of infiltration parameter

One of the most helpful infiltration equations in surface irrigation is 
the modified Kostiakov-Lewis equation. In this investigation, the 
Kostiakov–Lewis equation was employed to determine cumulative 
infiltration, as illustrated below [14].

where,

Z=Cumulative infiltration in units of volume per length of the furrow t 

elapse time of infiltration (min) α, k empirical coefficients 

(α=dimensionless, k=m3/min/m-1) fo Basic infiltration rate (m-3 m-1 

min-1)

The advance curve is a simple power function, found using the 
following equation.

where,

x=Water front advance (m)

P=Fitting parameter

t=Time from start of inflow (min) 

r=Fitting parameter
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Kostiakov-Lewis parameters (α and k) were determined as follows:

where,

k=Empirical coefficients

VL=Volume of water at the end of the field 

σ Z =surface profile coefficients 

Where σy is surface profile shape factor (0.77); σz is subsurface 
profile shape factor; t 0.5 L and TL are the advance times (min) at

two points, x1=0.5 L and x2=L respectively.

Irrigation performance parameter

Application Efficiency (AE) and Distribution Uniformity (DU) are 
performance criteria used in this study. Soil moisture samples were

taken by using Auger sampler at three locations along the furrow and 
at three depths before and after irrigation (48 hours) (0-30, 30-60 and 
60-90 cm) for estimating AE and DU.

Where Dad, Dp, Zmin, Zav, and Ddp represent the depth of water 
added to the root zone (mm),

Results and Discussion

Characteristics of the experimental site

The trial was conducted in 2019 and 2021 at were agricultural 
research center. The soil of the site categorized under clay soil 
texture. Table 2 gives the soil physical properties and textural class. 
The bulk density ranges from 1.19 to 1.23 g/cm3.

Soil depth
(cm)

FC (%) PWP (%) Available
water (mm/m)

Drainage rate
(cm/hr)

BD (g/cm3) Texture

Sand Clay Silt Class

0-30 42 30 147.9 26.9 1.19 5.1 58.2 36.7 Clay

30-60 42 30 152.9 24.4 1.23 9.1 52.9 38 Clay

60-90 41 27 156.8 26.4 1.22 6.5 51.5 42 Silty clay

FC=Field capacity, PWP=Permanent wilting point, BD=Bulk density

Table 2. Physical properties and soil texture of experimental field.

Figure 1 shows that the basic infiltration rate of soil of experimental 
site was 5.01 mm/hr, which was the maximum infiltration for the clay 
soil (Table 3).

Figure 1. Infiltration curve of experimental site.

Depth (cm) Ece (ds/m) pH Soluble cations

(Ca+Mg(meq/l) meq/l (Na) meq/l (k) SAR

0-30 0.44 7.7 1.5 12.1 1.01 13.8

30-60 0.61 7.5 1.2 15.6 1.03 21.5

60-90 0.79 7.5 1.5 13.7 1.1 17.4

Depth (cm) Exchangable cations OC

(%)

TOC (%) OM (%) TN (%) P (ppm)

(Ca+ Mg) cmol
+/kg

K cmol+/kg Na cmol+/kg

0-30 46.3 5.8 18.5 0.77 0.95 1.64 0.08 14.73
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30-60 44.7 4.3 16.2 0.61 0.8 1.38 0.07 16.63

60-90 43.3 2.6 14.3 0.52 0.69 1.19 0.06 17.06

OC=Organic Carbon, TOC=Total Organic Carbon, OM=Organic Matter, TN=Total Nitrogen, SAR=Sodium Absorption Ratio

Table 3. Soil chemical characteristics.



Main effect of inflow rate and furrow length on yield and water 
productivity

According to the analysis of variance, inflow rate had a significant 

significant (P ≤ 0.05) impact on crop water use efficiency. The 
maximum yield and water productivity was obtained from 50 m furrow 
length and from 1.2 l/sec inflow rate. The result concludes that as the 
furrow length increases the water productivity increases this in turn 

impact  on  crop  water  productivity  (P ≤ 0.01).  Furrow  length  had a ncrease the yield of cotton and decreases water loss (Table 4). This 
result agreed with the results of [15,16].

Furrow length LY BW Seed yield WP

10 m 5.87b 157.7b 3.38b 0.84b

30 m 6.76a 179.7a 3.90ab 0.97ab

50 m 6.72a 179.5a 4.62a 1.15a

LSD (0.05) 0.67 19.3 0.78 0.2

CV 11.2 12.1 21.4 21.8

Inflow rate

0.8 l/s 6.58a 167.6a 35.3b 0.88b

1.2 l/s 6.54a 174.2a 42.5a 1.06a

1.6 l/s 6.58a 175.2a 41.1ab 1.02ab

LSD (0.05) ns ns 6.4 0.16

CV 11.9 13.6 16.05 13.4

Seed yield (t/ha), LY=Lint Yield (t/ha), BW=30 Ball Weight (gm), WP=Water Productivity (kg/m3)

Table 4. Main effect of flow rate and furrow length.

The yearly combined analysis shows that there is a significance (P 
≤ 0.05) difference between furrow lengths in terms water productivity 
(Table 5). The highest water productivity was recorded from 50 m

furrow length and minimum was recorded from 10 m. The furrow 
length had significant effect on water productivity of cotton and this 
result agrees with the achievements of [17].

Treatment Water productivity (kg/m3)

2019 2021 Combined mean

Furrow length (m) 10 m 0.86 0.82 0.84b

30 m 1.02 0.93 0.97b

50 m 1.18 1.12 1.15a

Year*inflow*furrow length ns

LSD (5%) 0.16

CV 14.8

LSD=Least Significance Test, CV=Coefficient of Variation

Table 5. Main effect of furrow length on water productivity.

The combine analysis of inflow rate shows that had a significant (P ≤ 
0.05) effect on water productivity of cotton (Table 6). The maximum

water productivity was recorded from 1.6 l/s and minimum was 
recorded from 0.8 l/s inflow rate. This result agrees with 
achievements of [18-20].
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2019 2021 Combined mean

Flow rate (l/s) 0.8 l/s 0.89 0.87 0.88b

1.2 l/s 1.12 1 1.06ab

1.6 l/sec 1.06 0.99 1.02ab

Year*inflow*furrow length ns

LSD (5%) 0.16

CV 14.6

Table 6. Main effect of inflow rate on water productivity.

yield+lint yield) was recorded from 50 m furrow length.

Treatment Yield (ku/ha)

2019 2021 Combined mean

Furrow length (m) 10 m 34.6 33.1 33.8b

30 m 41.1 37 39.0b

50 m 47.5 44.9 46.2a

Year*inflow*furrow length ns

LSD (5%) 6.2

CV 19.4

Table 7. Main effect of furrow length on yield of cotton yield.

The yearly combined analysis of inflow rate shows that there is 
significant difference in harvest yield of cotton. The maximum yield

was obtained from 50 m furrow length and the lowest was recorded 
from the shortest 10 m furrow length (Table 8).

Treatment Yield (ku/ha)

2019 2021 Combined mean

Furrow length (m) 0.8 l/s 35.8 34.9 35.3b

1.2 l/s 44.9 40.1 42.5a

1.6 l/sec 42.4 39.9 41.1ab

Year*flow*furrow length ns

LSD (5%) 6.6

CV 18.4

Table 8. Main effect of inflow rate on yield of cotton.

The effect of furrow length and inflow rate on water productivity 
and yield of cotton

According to the results of ANOVA table there is a significant 
difference (P ≤ 0.05) between the interaction effects of furrow length 
and inflow rate (Table 9). The maximum water productivity of (1.37 kg/
m3) was recorded from 50 m furrow length combined with 1.2 l/s flow 
rate. Maximum lint and seed yield was also recorded from the same 
furrow length combined with 1.2 lit/s inflow rate. The highest water 
application efficiency of (65%) was recorded from 50 m furrow length 
with  1.2 l/s  inflow rate.  The  maximum  DU  (Table 9)  of 84.3%  was 

obtained for 50 m furrow length and 1.2 lit/s inflow rate; whereas the 
minimum DU 38.3% was obtained for flow rate of 1.6 lit/s inflow 
rate of the 10 m furrow length. Application efficiencies affected by the 
furrow length and inflow rate. The higher the furrow length has 
maximum application efficiency and cotton lint and seed yield plus 
water productivity. On clay soil that furrow length and application 
discharge are the main factor affecting application efficiency and 
larger flow rates are needed as furrow length increases to obtain high 
efficiencies [21,22]. Higher furrow length has maximum application 
efficiency and yield. The result in lined with results of [23,24].

Interaction effect of furrow length and inflow rate on cotton lint and 
seed yield was found to be significant (P ≤ 0.05). Highest lint yield 
68.6 qu/ha was obtained from combination of 50 m furrow length and
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Treatment Water productivity

The combined analysis shows that the yield had significantly 
affected by furrow length (Table 7). The maximum cotton yield (seed 



1.2 lit/s inflow rate. The least yield 54.8 qu/ha was obtained from 
combination of 50 m furrow length and 0.8 lit/s inflow rate. Cotton lint 
yield, seed yield and water productivity were highly affected by 
interaction effect of furrow length and inflow rate. Lint and seed yield

was also affected by inflow rate and furrow length. Given this and 
other economic benefits, it can be conclude that longer furrow length 
and moderate inflow rate is better for cotton production [25-31].

No Treatment AE (%) DU (%) WP
(kg/m3)

Advance time (min) Slope (%) Furrow
width (m)

Furrow
length(m)

Discharge
(l/sec)

LY (qu/ha) Seed
yield (qu/
ha)Furrow

length (m)
and flow
rate (l/
sec)

T0.5L TL

1 10
m_Qmax_
50%

43.8 55.6 0.89bc 1.44 3.09 0.53 0.9 10 0.8 54.8c 35.6c

2 10
m_Qmax_
75%

56.6 49.6 0.78c 3.15 7.17 0.53 0.9 10 1.2 59.3bc 31.2c

3 10 m_
Qmax
_100%

38.3 68.1 0.85bc 4.12 3.07 0.53 0.9 10 1.6 62.1abc 34.5c

4 30 m_
Qmax
_50%

64.1 61.6 0.93bc 6.7 30.35 0.53 0.9 30 0.8 67.2ab 37.2c

5 30 m_
Qmax
_75%

58.3 61.1 1.03b 2.58 6.35 0.53 0.9 30 1.2 68.6a 41.2bc

6 30 m_
Qmax
_100%

61.2 78.1 0.97bc 4.97 19.66 0.53 0.9 30 1.6 67.2ab 38.6c

7 50 m_
Qmax
_50%

51 54.4 0.82c 14.75 28.92 0.53 0.9 50 0.8 64.7ab 33.2c

8 50 m_
Qmax
_75%

65 84.4 1.37a 16.49 40.5 0.53 0.9 50 1.2 68.6a 55.1a

9 50 m_
Qmax
_100%

42.5 74.1 1.25a 11.46 26.8 0.53 0.9 50 1.6 68.2a 50.3ab

Lsd (0.05) 0.19 8.5 11.3

CV 14.8 11.3 24.4

DU=Water Distribution Uniformity (%), WP=Water productivity, AE=Application Efficiency, DU= Distribution Efficiency (%), T0.5 L=Advance time in minutes at the middle of the furrow length, TL=Advance 
time in minutes at the end of the furrow length

Table 9. Interaction effect furrow length and flow rate on yield and water productivity of cotton.

Conclusion
Efficient application and distribution of water by furrow irrigation is 

dependent on furrow parameters such as flow rate, soil textural class, 
field slope, soil infiltration characteristics, roughness coefficient, and 
irrigation management. To address these issues, the first priority is to 
improve irrigation water management. There is limited quantitative 
data on the Amibara irrigation scheme's system performance and 
water management. Therefore, the objective of this study was to 
generate information on furrow variables specifically flow rate and 
furrow length and their combination to enhance irrigation efficiency 
for cotton production.
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