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Editorial

Zinc is involved in numerous metabolic functions, including energy
metabolism, immunity and antioxidant activity [1]. The majority of
zinc is found within the musculoskeletal system as part of protein
complexes. In addition to providing structural stability for proteins,
zinc also acts as a cofactor for metalloenzymes, including lactate
dehydrogenase (LDH), superoxide dismutase (SOD) and carbonic
anhydrase (CA). At the muscle tissue level, exercise can disrupt cellular
structures [2] which leads to the release of proteins and ions, such as
zinc, from myocytes. In the initial stages of muscle repair, monocytes
and leukocytes infiltrate muscle cells, initiating cytokine production
and the subsequent inflammatory response [3]. Inflammatory
cytokines have been shown to regulate the expression of cellular zinc
transporters in a number of tissues and thereby alter zinc homeostasis
[4]. In the present review we examine the interactions between exercise
and zinc status in humans.

Acute Effects of Exercise on Zinc Metabolism

Zinc loss, in particular through sweat during exercise, is well
documented [5,6]. The magnitude of zinc loss in sweat appears to be
dependent on training status, duration of exercise and ambient
temperature. In prolonged exercise, conservation of sweat zinc is
evident after an hour of aerobic activity and this adaptation is
enhanced further in heat-acclimatised individuals [7]. Similarly, the
magnitude of urinary zinc excretion is confounded by the differences
in exercise test conditions resulting in inconsistent reports for urinary
zinc loss post exercise [8,9].

Conflicting results have also been reported for plasma zinc
concentrations immediately after maximal physical exertion [8,10,11].
There appears to be negligible effects on plasma zinc immediately after
submaximal exercise [12,13]. In exercise recovery, a decrease in plasma
zinc concentrations is observed, especially in studies that report higher
plasma zinc immediately after exercise [8,14]. The individual’s training
status is implicated in regulating zinc homeostasis during exercise.
Endurance trained individuals, who have higher aerobic thresholds,
have smaller fluctuations in serum zinc during exercise when
compared to inactive individuals [9]. In inactive subjects, lower levels
of zinc and CA-I in erythrocytes were found immediately after high
intensity cycling, which returned to baseline values after 30 minutes of
rest [15]. The concomitant reduction in plasma zinc suggests a shift of
zinc from plasma to erythrocytes. Taken together, the redistribution of
zinc between different compartments highlights the rapid flux of zinc
when challenged by exercise.

A number of mechanisms have been proposed to account for the
flux of zinc observed during exercise recovery, namely localised
exercise-induced muscle inflammation and its sequel. In a study where
70Zn was infused into subjects after a maximal aerobic exercise bout,

zinc flux shifted from plasma into the interstitial fluid and the liver,
possibly due to the acute phase response and/or changes in oncotic
pressure with exercise [16]. The acute stress of exercise induces the
production of cytokines, such as interleukin-6 (IL-6), which can
sequester zinc in the liver through hepatic metallothionein (MT) and
differential regulation of zinc transporters [17].

Effect of Chronic Exercise Training on Zinc Status

Additional zinc losses and transfer between body compartments as a
result of repeated exercise bouts are hypothesised to compromise zinc
status. In previously inactive individuals who were subjected to an
aerobic training program, there was a decline in serum zinc
concentration after several weeks of training [18]. In addition, Ohno et
al. reported a reduction in the circulating pool of exchangeable zinc in
men after a 10-week running program [19]. Collectively, these
observations suggest an increased requirement of zinc in the presence
of chronic exercise stress.

Longitudinal studies which followed athletes over a competitive
season report contradictory changes to blood zinc concentrations
[20,21]. However, the failure of some studies to assess dietary zinc
intake during the study period limits the interpretation of the results.
In cross-sectional studies, there appears to be no significant differences
in plasma zinc levels between athletes and the general population [22].
High impact sports which result in increased level of muscle damage
may lead to higher amounts of zinc released from muscle cells.
Athletes in aerobic disciplines, such as triathletes or long distance
runners, are more likely to display signs of zinc redistribution from
plasma to erythrocytes when compared to their anaerobically-trained
counterparts [23]. In addition, erythrocyte-SOD appears to be
upregulated as a result of exercise adaptation. Correlations between
erythrocyte-zinc, -MT and -SOD activity in elite athletes further
emphasize the requirement for zinc in the development of
antioxidative adaptation in erythrocytes [23].

Zinc and Exercise Performance

A number of zinc depletion studies have investigated the effect of
zinc on measures of exercise performance in humans. In a randomised
cross-over trial in men, low dietary zinc intake (3.8 mg/day for 9
weeks) was shown to impair cardiorespiratory function and lower
levels of erythrocyte zinc and CA activity [24]. Muscle endurance of
the shoulder complex and knee extensor have been shown to decline
significantly after 33-40 days of zinc depletion [25]. Peak force,
however, was unaffected by low dietary zinc intake. The authors
attributed these effects to changes in lactic acid metabolism as a result
of zinc depletion, possibly through reduced activity of LDH within the
muscles. A decline in cardiovascular function and total work capacity
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of skeletal muscles as a result of acute zinc depletion further emphasise
zinc’s role in exercise performance.

Marginal zinc deficiency in athlete groups, induced by inadequate
zinc intake and additional zinc loss, could contribute to early fatigue.
Zinc supplementation has been shown to increase the count and
deformability of erythrocytes, thereby improving blood rheology
during exercise [26]. Although the effect of zinc on exercise
performance is unclear, there appears to be a reduction in athletes’
ratings of perceived exertion at submaximal intensities during zinc
supplementation. Figure 1 summarises the potential interactions
between exercise-induced metabolic stress and zinc homeostasis.
Inflammation may serve as a key mediator by influencing cellular zinc
transport. Following exercise, a cocktail of pro- and anti-inflammatory
cytokines, such as IL-1 receptor antagonist, IL-6, IL-8 and IL-10, are
elevated [27] and are capable of impacting zinc homeostasis by altering
the expression of cellular zinc transporters [4].
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Figure 1: Potential relationships between exercise, inflammation
and zinc homeostasis. Exercise-induced metabolic stress and
inflammation can alter zinc homeostasis by promoting zinc loss and
zinc redistribution to other tissue. This may be contributed by the
link between inflammatory cytokines and regulation of cellular zinc
transporters. In exercise training, metabolic stress and zinc
homeostasis may affect exercise adaptations such as increased RBC
enzymes and muscle mass.

Implications for Research and Practice

Although zinc status is implicated in exercise performance, further
evidence is required to establish dietary zinc requirement for the
athletic population. As such, the current recommendation for athletes
and those who regularly participate in strenuous activities is to
consume the level of dietary zinc proposed for the general population
(14 mg/day for men; 8 mg/day for women) [28]. Zinc supplementation
at levels below the Upper Limit may be appropriate for athletes who
have suboptimal dietary zinc consumption despite strategies to
incorporate additional zinc through diet. This is especially relevant for
those on energy restricted or high carbohydrate diets, where
bioavailable zinc may be insufficient. Further research is required to

elucidate the mechanisms of zinc metabolism during exercise, and to
consider specific challenges in measurements under exercise
conditions, such as changes in blood volume [12].

Conclusion

Exercise has been shown to alter zinc metabolism and cause the
redistribution of zinc within the body. Although the mechanisms of
zinc homeostatic response during exercise are not clear, there is an
indication of increased zinc requirement with strenuous activity due to
additional zinc losses through sweat and urine. Failure to meet the
requirement for zinc may contribute to suboptimal performance in
some athletic population.
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