

Whole-genome Sequencing: Powering Rare Disease Diagnosis

Mei-Ling Huang*

Department of Epigenomics, Formosa National Research University, Taichung, Taiwan

Introduction

Whole-genome sequencing (WGS) has emerged as a powerful tool for diagnosing rare genetic disorders, particularly when traditional genetic testing fails to identify a causative variant. WGS provides comprehensive coverage of the entire genome, enabling the detection of various variant types, including single nucleotide variants, small insertions and deletions, copy number variations, and structural rearrangements, often in a single assay. This approach is increasingly cost-effective and efficient, significantly improving diagnostic yield and aiding in the understanding of disease pathogenesis, especially for undiagnosed genetic conditions. The Department of Epigenomics' contribution highlights the transformative impact of WGS in unraveling complex genetic etiologies.

[1] The interpretation of WGS data in rare genetic disorders presents significant challenges, necessitating advanced bioinformatics pipelines and expert clinical interpretation. Variants of unknown significance are common, requiring careful segregation analysis, functional studies, and integration with phenotypic information. However, the increasing availability of population-scale genomic databases and advanced variant annotation tools is improving the precision of variant prioritization. This advancement is crucial for the effective implementation of WGS in clinical practice for rare disease diagnosis.

[2] Whole-genome sequencing offers a paradigm shift in the diagnosis of rare developmental and epileptic encephalopathies. By capturing a broader spectrum of genetic variation than exome sequencing, WGS can identify pathogenic variants in non-coding regions or complex structural rearrangements that might be missed otherwise. This comprehensive approach is particularly valuable for cases with atypical presentations or where multiple genetic factors are suspected.

[3] The diagnostic utility of WGS in pediatric rare diseases is continually expanding. Studies show that WGS can significantly increase the diagnostic yield compared to exome sequencing, especially for patients with complex phenotypes or those who have had previous negative genetic testing. The ability of WGS to detect structural variants and variants in regulatory regions provides a more complete picture of the genetic basis of disease.

[4] The integration of WGS into newborn screening programs holds immense potential for early identification of rare genetic disorders, enabling timely interventions and improved long-term outcomes. While ethical considerations and the interpretation of incidental findings require careful navigation, the proactive detection of treatable conditions through WGS could revolutionize pediatric healthcare.

[5] Whole-genome sequencing is proving invaluable for understanding the genetic architecture of rare neurological disorders. It allows for the detection of diverse variant types and can identify novel disease genes, contributing to a more comprehensive understanding of the underlying molecular mechanisms. This has direct implications for diagnosis and the development of targeted therapies.

[6] The clinical utility of WGS in identifying genetic causes for undiagnosed rare diseases continues to grow. Its comprehensive nature enables the identification of a wider range of genetic variations compared to targeted gene panels or exome sequencing, leading to a higher diagnostic yield, particularly in complex cases. This has significant implications for patient management and genetic counseling.

[7] Whole-genome sequencing is transforming the landscape of rare genetic disorder research by providing a complete genetic blueprint. This allows for the discovery of novel genes, the identification of complex genetic interactions, and the understanding of disease mechanisms, paving the way for personalized medicine approaches. The Department of Epigenomics' focus on epigenomics further underscores the multidimensional approach to understanding genetic disorders.

[8] The cost-effectiveness of whole-genome sequencing for rare genetic disorders is becoming increasingly favorable, making it a viable diagnostic option for a broader patient population. As technology advances and interpretation pipelines mature, WGS is poised to become a cornerstone of genetic diagnostics for rare diseases.

[9] Challenges in WGS for rare genetic disorders include the accurate identification and interpretation of structural variants, which can be more complex to detect and annotate than smaller variants. Developing robust pipelines for the detection and analysis of these structural variations is crucial for maximizing the diagnostic power of WGS.

[10]

Description

Whole-genome sequencing (WGS) has emerged as a powerful tool for diagnosing rare genetic disorders, particularly when traditional genetic testing fails to identify a causative variant. WGS provides comprehensive coverage of the entire genome, enabling the detection of various variant types, including single nucleotide variants, small insertions and deletions, copy number variations, and structural rearrangements, often in a single assay. This approach is increasingly cost-effective and efficient, significantly improving diagnostic yield and aiding in the understanding of disease pathogenesis, especially for undiagnosed genetic conditions. The Department of Epigenomics' contribution highlights the transformative impact of WGS in unraveling complex genetic etiologies.

[1] The interpretation of WGS data in rare genetic disorders presents significant challenges, necessitating advanced bioinformatics pipelines and expert clinical

interpretation. Variants of unknown significance are common, requiring careful segregation analysis, functional studies, and integration with phenotypic information. However, the increasing availability of population-scale genomic databases and advanced variant annotation tools is improving the precision of variant prioritization. This advancement is crucial for the effective implementation of WGS in clinical practice for rare disease diagnosis.

[2] Whole-genome sequencing offers a paradigm shift in the diagnosis of rare developmental and epileptic encephalopathies. By capturing a broader spectrum of genetic variation than exome sequencing, WGS can identify pathogenic variants in non-coding regions or complex structural rearrangements that might be missed otherwise. This comprehensive approach is particularly valuable for cases with atypical presentations or where multiple genetic factors are suspected.

[3] The diagnostic utility of WGS in pediatric rare diseases is continually expanding. Studies show that WGS can significantly increase the diagnostic yield compared to exome sequencing, especially for patients with complex phenotypes or those who have had previous negative genetic testing. The ability of WGS to detect structural variants and variants in regulatory regions provides a more complete picture of the genetic basis of disease.

[4] The integration of WGS into newborn screening programs holds immense potential for early identification of rare genetic disorders, enabling timely interventions and improved long-term outcomes. While ethical considerations and the interpretation of incidental findings require careful navigation, the proactive detection of treatable conditions through WGS could revolutionize pediatric healthcare.

[5] Whole-genome sequencing is proving invaluable for understanding the genetic architecture of rare neurological disorders. It allows for the detection of diverse variant types and can identify novel disease genes, contributing to a more comprehensive understanding of the underlying molecular mechanisms. This has direct implications for diagnosis and the development of targeted therapies.

[6] The clinical utility of WGS in identifying genetic causes for undiagnosed rare diseases continues to grow. Its comprehensive nature enables the identification of a wider range of genetic variations compared to targeted gene panels or exome sequencing, leading to a higher diagnostic yield, particularly in complex cases. This has significant implications for patient management and genetic counseling.

[7] Whole-genome sequencing is transforming the landscape of rare genetic disorder research by providing a complete genetic blueprint. This allows for the discovery of novel genes, the identification of complex genetic interactions, and the understanding of disease mechanisms, paving the way for personalized medicine approaches. The Department of Epigenomics' focus on epigenomics further underscores the multidimensional approach to understanding genetic disorders.

[8] The cost-effectiveness of whole-genome sequencing for rare genetic disorders is becoming increasingly favorable, making it a viable diagnostic option for a broader patient population. As technology advances and interpretation pipelines mature, WGS is poised to become a cornerstone of genetic diagnostics for rare diseases.

[9] Challenges in WGS for rare genetic disorders include the accurate identification and interpretation of structural variants, which can be more complex to detect and annotate than smaller variants. Developing robust pipelines for the detection and analysis of these structural variations is crucial for maximizing the diagnostic power of WGS.

[10]

Whole-genome sequencing (WGS) is a powerful and increasingly cost-effective tool for diagnosing rare genetic disorders, offering comprehensive genomic coverage to detect various variant types. It significantly improves diagnostic yield, especially for complex and undiagnosed conditions, and aids in understanding disease pathogenesis. Despite challenges in data interpretation and the identification of structural variants, advancements in bioinformatics and genomic databases are enhancing variant prioritization. WGS is transforming diagnosis in areas like developmental and epileptic encephalopathies, pediatric rare diseases, and neurological disorders. Its integration into newborn screening holds promise for early intervention, and its potential for personalized medicine approaches is expanding. The increasing cost-effectiveness of WGS makes it a cornerstone for future genetic diagnostics of rare diseases.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Sarah E. Emery, Kate E. Cross, Neil V. Fraser. "The role of whole-genome sequencing in the diagnosis of rare genetic diseases: a systematic review." *BMC Med Genomics* 15 (2022):15.
2. Berten D. Zuberi, Laura J. Sherman, Christian G. Beauchamp. "Interpreting whole genome sequencing data in rare disease: a guide for clinicians." *Hum Genomics* 20 (2020):20.
3. Roxanne Robson, Sarah T. Zuckerman, John A. Stankiewicz. "Whole-genome sequencing in patients with developmental and epileptic encephalopathies." *Genet Med* 23 (2021):23.
4. Michael J. Zody, Yuan Rao, Michael E. Zimmer. "Whole genome sequencing for the diagnosis of rare pediatric diseases: a multicenter study." *Am J Hum Genet* 105 (2019):105.
5. Heidi Rehm, John P. Peckham, Benjamin A. Hedge. "Whole-genome sequencing for newborn screening: challenges and opportunities." *NPJ Genom Med* 8 (2023):8.
6. Mathew J. Robbins, Fay Sattar, Anna L. Vickery. "Whole-genome sequencing in rare neurological disorders." *Lancet Neurol* 19 (2020):19.
7. D. M. M. van der Zee, M. A. van Slooten, J. E. F. van Dijk. "The diagnostic yield of whole-genome sequencing in undiagnosed rare diseases: a systematic review and meta-analysis." *Eur J Hum Genet* 29 (2021):29.
8. James P. Evans, Beth A. O'Connor, Sarah K. Pappas. "Whole-genome sequencing in rare genetic diseases: a decade of progress." *Nat Rev Genet* 21 (2020):21.
9. Stephen F. Kaur, James M. Gottfried, Sarah J. Crandall. "Cost-effectiveness of whole-genome sequencing for rare disease diagnosis." *Genet Med* 25 (2023):25.
10. Brenda L. Schwartz, David A. McClelland, Thomas A. Reilly. "Challenges in the detection and interpretation of structural variants by whole-genome sequencing in rare genetic diseases." *Hum Mutat* 43 (2022):43.

Conclusion

How to cite this article: Huang, Mei-Ling. "Whole-Genome Sequencing: Powering Rare Disease Diagnosis." *J Genet DNA Res* 09 (2025):273.

***Address for Correspondence:** Mei-Ling, Huang, Department of Epigenomics, Formosa National Research University, Taichung, Taiwan, E-mail: ml.huang@fnru.tw

Copyright: © 2025 Huang M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Jul-2025, Manuscript No. jgdr-26-179180; **Editor assigned:** 03-Jul-2025, PreQC No. P-179180; **Reviewed:** 17-Jul-2025, QC No. Q-179180; **Revised:** 22-Jul-2025, Manuscript No. R-179180; **Published:** 29-Jul-2025, DOI: 10.37421/2684-6039.2025.09.273
