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Wavelet Time Scattering Based Classification of Interictal 
and Preictal EEG Signals

Abstract
If it were possible to reliably identify the preictal brain state from dynamical changes in EEG data of epilepsy patients, then the age long problem of actualizing a 
fully automated closed-loop seizure – warning or seizure-prevention system that is clinically deployable would have been resolved. Accordingly, through feature 
engineering, a great deal of effort has been invested over the discovery of EEG features or measures that are always indicative of the preictal brain state. 
However, this has proven to be difficult, time consuming and apparently unsuccessful. Therefore, lately, attention has shifted to feature learning-methods that 
automatically learn and extracts useful discriminatory features from raw data. This paper studies the efficacy of wavelet time scattering learned EEG features 
for interictal and preictal EEG classification. Wavelet time scattering network developed in Matlab and two different EEG datasets: CHB-MIT scalp EEG and 
AES intracranial EEG datasets were used for the study. The learned interictal and preictal EEG features were used to train and evaluate a simple binary support 
vector machine classifier. Three different classification accuracy results namely ordinary cross validation, true cross validation and test classification accuracy 
results were reported for the analysis. Mean classification accuracy values of 93.15%, 97.57% and 91.33% were obtained respectively for the scalp EEG while 
mean classification accuracy values of 98.33%, 100% and 96.73% were obtained respectively for the intracranial EEG. A general comparison showed that the 
combination of wavelet time scattering learned EEG features and a simple binary support vector machine classifier performed equally or even better than deep 
convolutional neural networks in EEG classification tasks. Finally, wavelet time scattering has proven to be a very good EEG feature learner and may greatly 
improve the sensitivity and specificity of seizure prediction algorithms.
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Introduction 

Epilepsy is a chronic brain disorder that constitutes a major public 
health concern. It affects more than 50 million people worldwide [1]. The 
prevalence of epilepsy is particularly high in developing countries especially 
Latin America and several African countries, notably Liberia, Nigeria and 
the United Republic of Tanzania [2]. The hallmark of epilepsy is recurrent 
and spontaneous seizures which are caused by parts of the brain eliciting 
abnormally synchronous electrical activity. These seizures not only disrupt 
normal living but can also cause mental and physical damage and in 
extreme cases, even death. 

Generally, the causes of epilepsy can be classified into three broad 
categories: genetic, cryptogenic (unknown or hidden causes) and others 
(head trauma, brain tumors etc.). Experts believe that genetic predisposition 
combined with environmental conditions lead to epilepsy in some patients. 
The affected genes are often those that control the excitability of neurons 
in the brain [3]. 

In the majority of epileptic cases, accurate diagnosis of the disease can 
be made with treatment in the form of regular use of Anti-Epileptic Drugs 
(AEDs) but there are concerns about the side effects of these drugs. Also 
quite a number of epileptic patients suffer from drug resistant epilepsy and 
may require surgical measures which involve excision of relatively large 
amount of brain tissue. Apart from the fact that surgery raises concern about 
neurological disability that may result by the removal of either normal or 
functionally necessary tissue, there have been reported cases of seizures 
in quite a number of patients who had resection [4]. In summary, AEDs have 
side effects and refractory epilepsy has defied existing treatment protocols. 

Therefore, researchers are currently looking for alternative therapeutic 
strategy for epilepsy.

One good strategy is seizure prediction. If seizures are predicted well 
ahead of time, patients with refractory epilepsy will have ample time to 
prepare and guide against injuries and sudden deaths. In addition, since 
anti-epileptic drugs would forthwith be administered on-demand (i.e. after 
the prediction of an impending epileptic seizure), dose – related side 
effects in patients placed on anti-epileptic drugs will be greatly reduced. 
Furthermore, other emerging interventional therapeutic approaches such as 
electrical neurostimulation, optogenetics, drug perfusion and focal cooling 
require devices whose animation will be triggered by a reliable, accurate 
and timely seizure prediction algorithm. Such algorithm can be used for 
the interruption of seizure-generating mechanisms and, also, to avert 
impending seizures.

Since the pioneering works of Viglione and colleagues aimed at 
predicting seizure through EEG data analysis, a huge amount of studies 
have since been carried out but to date this problem has not been 
satisfactorily solved. This has been a great source of concern to the 
international research community such that biennially, the International 
Workshop on Seizure Prediction (IWSP) is held. The IWSPs are a forum that 
brings together an international interdisciplinary group of epileptologists, 
engineers, physicists, mathematicians, neurosurgeons and neuroscientists 
with the goal of developing engineering-based epilepsy treatments [5].

The main steps involved in seizure prediction workflow include EEG 
data acquisition and preprocessing, Feature extraction and design of 
preictal state identification method (i.e. classification or thresholding). 
The hypothesis that there exists a transition state (preictal) between the 
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interictal (normal) and the ictal (seizure) brain states is central to the seizure 
prediction idea and there are a number of clinical evidences that support 
this hypothesis. These evidence include increases in cerebral blood flow, 
cerebral oxygenation and many others [6]. If reliable seizure prediction from 
dynamical changes in the EEG is possible, then, the dream of actualizing 
a clinically deployable closed-loop seizure – warning/aborting system 
would be possible. Accordingly, a great deal of effort has been invested 
over characteristic EEG features that are always indicative of the preictal 
brain state. In fact, feature extraction step has been described as the most 
difficult steps in the seizure prediction workflow [7]. Feature engineering 
which is the process of using domain knowledge to manually extract 
features has been the traditional approach to EEG feature extraction for 
seizure prediction. The main disadvantage of feature engineering is that it is 
error prone because it is tedious, time consuming and dependent on domain 
knowledge. Feature learning or representation learning is an automated 
feature extraction scheme that improves upon the standard workflow by 
automatically extracting meaningful and useful features. In particular, 
deep learning models such as deep Convolutional Neural Networks 
(CNNs) nowadays provide state-of-the-art solutions to many problems 
in computer vision or image classification, speech recognition, natural 
language processing, etc. These models can learn data representation 
at different levels of abstraction and extract complex features from input 
raw data. However, CNNs require large number of labeled learning data 
and computational needs owing to the large number of hyperparameters to 
be learned in the network. In addition, features extracted by CNNs can be 
difficult to interpret [8].

Interestingly, a technique which addresses the challenges of deep 
CNNs has been proposed. This technique is called group invariant 
scattering [9]. Group invariant scattering is also referred to as wavelet time 
scattering or scattering transform. The scheme uses multi-layered network 
involving fixed wavelet kernel based transform. Physiological signals often 
portray certain variabilities that are not really important for classification 
task (i.e. the variabilities are not useful in determining the class of the 
signals). Example of such variabilities include shifting and stretching in time 
and transposition in frequency. Since those things that are important for a 
given signal classification task are usually unknown, scatter transform takes 
a conservative approach and creates representations of the raw data that 
are invariant to variabilities that don’t affect the class of the signals while still 
preserving as much information in the data so as to keep other variabilities 
that are important in determining class of signals. An immediate advantage 
of scatter transform is that it allows us to construct classification models that 
don’t require as much training data [10].

In this paper, we investigate the capacity of scattering transform to 
automatically extract EEG features that are efficient in predicting seizure 
occurrence by identifying a preictal brain state. Since the success or failure 
of a seizure prediction algorithm is highly dependent on how well and how 
consistent its classifier can correctly classify interictal and preictal EEG data 
epochs of epileptic patients, the efficacy of the obtained scattering features 
for seizure prediction may, in the first instance, be accessed by using the 
scattering features to build and evaluate a simple binary classifier such as 
a linear support vector machine. The efficacy of wavelet time scattering 
has already been demonstrated in unsupervised anomaly sensing based 
seizure detection and unsupervised anomaly sensing based seizure 
prediction algorithms [11]. This paper provides an introductory framework 
for the use of scattering transform in supervised anomaly sensing based 
seizure prediction algorithms. The remaining part of the paper is organized 
as follows. A brief description of the workings of wavelet time scattering 
is given in section II. Section III gives detailed description of the methods 
used while results and discussion are presented in section IV. We give our 
conclusion and future directions in section V. 

Scattering transform

Scattering transform or wavelet time scattering is a technique used to 
derive low-variance features from real-valued time series data or signals. Its 
historic frame of reference starts with the Fourier transform which is often 
referred to as the canonical signal processing technique. A major setback 

of the Fourier transform is its inability to localize frequency information 
contained in signals. As a result, the technique exhibit very high instability 
to signal deformations at high frequency. This means that the spectrogram 
representation of a signal and its slightly flustered version through high 
frequency deformation will look different even though the two signals still 
look very similar. This instability property of Fourier transform to signal 
deformation is attributed to the non-localized support property of sine wave 
which happens to be the major building block of the Fourier transform [12]. 
To fix this problem, the wavelet transform concept was developed [13]. In 
wavelet transform, signals are decomposed using a dictionary of wavelets 
having localized support property but with variant dilation and thus, the 
emerging representation exhibits high frequency components localization 
of signals. 

In finding good data representation for pattern classification or 
recognition problems, there exists another important property which is often 
desired in the representation. This property is called translation invariance. 
A representation or transformation exhibits translation invariance if 
under the transformation a signal and its shifted versions have the same 
representation in the feature space. Wavelet transform lacks this property 
and it is said to be translation covariant, that is, when a signal is shifted 
its wavelet coefficients are also shifted. This makes signal classification 
difficult as a signal and its time shifted version will be assigned to different 
classes. 

The need for building a signal representation that displays translation 
invariance and stability under deformation properties led to the development 
of the scattering transform [14]. The fundamental building block of the 
wavelet time scattering is the Morlet wavelet which is derived from Gaussian 
windowed sinusoid. A wavelet time scattering framework processes data in 
stages. The output of one stage becomes the input for the next stage. Each 
stage consists of three operations, namely, convolution (using wavelets), 
nonlinearity (by taking modulus) and averaging (using scaling function). In 
what follows we provide a general description of the steps involved in using 
wavelet scattering network for feature extraction. Detailed mathematical 
description of the wavelet scattering framework can be found elsewhere 
[15].

The scattering transform generates features in an iterative manner 
(Figure 1). An input signal, y is first averaged using wavelet low pass filter 
(i.e. convolve the signal with the scaling function, ϕ_j). The results, *ϕ_j, 
are referred to as the first order scattering coefficients, Sc(0) or layer zero 
scattering features. With the averaging operation, high frequency details 
in the signal is lost. The lost details in the first step are captured in the 
subsequent layers by performing a continuous wavelet transform of the 
signal to yield a set of scalogram coefficients. A nonlinear operator (a 
modulus) is applied on the scalogram coefficients and then the output is 
filtered with the low pass filter to yield a set of layer 1 scattering coefficients, 
Sc(1).

The same process is repeated to obtain the layer 2 scattering 
coefficients, Sc (2). The output of the scalogram coefficients in the previous 
layer becomes the input to the operation in the next layer. Then we apply 

Figure 1. Wavelet Time Scattering Framework. The sequence of edges from 
the root to a node is referred to as a path. The tree nodes are the scalogram 
coefficients. Theattering coefficients are the scalogram coefficients convolved with 
the scaling function. The set of scattering coefficients are the low-variance features 
derived from the data.
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the same modulus operator and filter the output with the wavelet low pass 
function to yield the layer 2 scattering coefficients. We can have more than 
three layers in the scattering network but in practice the energy dissipates 
with every iteration so three layers are appropriate for most applications 
[16]. The coefficients are critically down sampled to reduce computational 
complexity of the network. These coefficients which can be visualized 
and interpreted are collectively referred to as the scattering features. A 
wavelet scattering network may be referred to as a deep network because 
it performs the three major tasks that make a deep network: convolution, 
nonlinearity and pooling. Convolution is performed by wavelets, the modulus 
operator serves as the nonlinearity and filtering with wavelet low pass filter 
is analogous to pooling.

Methodology

EEG datasets 

Two separate EEG datasets: CHB-MIT scalp EEG dataset from 
PhysioNet and American Epilepsy Society (AES) intracranial EEG dataset 
from Kaggle were obtained and used for the study. We provide a brief 
description of each dataset and the extracted EEG data for this study [17].

CHB-MIT dataset

The CHB-MIT database consists of 24 scalp EEG (sEEG) recordings 
from 23 patients (i.e. one patient has two different recordings) suffering from 
intractable epileptic seizures. In total the recordings span approximately 982 
hours and contains 198 seizures. All signals were sampled at 256 samples 
per second with 16-bit resolution over 23 electrodes. The International 
10-20 system of EEG electrode positions and nomenclature was used for 
the recordings. The data is grouped into cases with each case containing 
between 9 and 42 continuous .edf (European data format) files from a single 
patient. Information about the elapsed time in seconds from the beginning 
of each .edf file to the beginning and end of each seizure contained in it is 
also made available in the dataset. The EEG data can be accessed through 
the PhysioNet website: http://physionet.org /physiobank/database/chbmit/.

The EEG data files which were recorded in the European data format 
(Edf) were converted into Matlab files through BIOSIGtoolbox for EEGLAB 
in the Matlab environment. 25 minutes’ postictal duration and 60 minutes’ 
preictal duration were assumed. In order to allow for therapeutic intervention, 
5 minutes of data immediately preceding seizure was not included in the 
preictal data [18]. The remaining data were then taken as the interictal. 
Furthermore, to avoid excessive mixing of pre-seizure, seizure and post 
seizure EEG data, only patients with at least 2 seizure segments separated 
by at least a 2-hr period had their data extracted and used for the study [19]. 
This led to the exclusion of 7 EEG recordings of 6 patients from the study. 
The number of 60 minutes’ preictal EEG data blocks in a patient’s data was 
dictated by number of leading seizure events in the whole EEG recordings 
of the patient. Equal number of 60 minutes’ interictal EEG data blocks were 
extracted for the patient. The interictal EEG data blocks considered are 
those recorded at least four hours away from any seizure event. Figure 2 is 
a Matlab stacked plot showing few samples of interictal and preictal scalp 
EEG data blocks of one of the patients[20].

Patients’ datasets

In preparation for feature extraction, an interictal EEG data block and 
a preictal EEG data block for a patient were randomly selected and row 

concatenated to obtain a data matrix. The number of data matrices for a 
patient make up the number of datasets for the patient.

Class labels 

After obtaining the patients’ datasets, a matrix named EEGclassLabels 
was created. EEGclassLabels is a 2k-by-1 (k is the number of EEG 
channels) cell array of class labels, one for each row data in the patients’ 
datasets. The two class labels are ‘INT’ (interictal) and ‘PRE’ (preictal).

Training and test patients’ datasets 

Each patient’s datasets were randomly split into two sets – the training 
and test sets. To achieve this, a Matlab function was created. This function 
takes as inputs a dataset and EEGclassLabels and outputs two datasets 
(TrainingDataset and TestDataset) along with a set of labels (TrainingLabels 
and TestLabels) for each. Each element of TrainingLabels and TestLabels 
contains the class label for the corresponding row of the patients’ dataset 
matrices. 70% of the data in each class was assigned to TrainingDataset 
while the remaining 30% was held out for testing and was assigned to Test 
Dataset [21].

AES dataset 

National (American) Institutes of Health, the Epilepsy Foundation, 
and the American Epilepsy Society organized an international competition 
tagged “American Epilepsy Society Seizure Prediction Challenge” [22]. 
Its goal was to identify the best model for discriminating between preictal 
and interictal iEEG clips. iEEG data of five canine subjects with naturally 
occurring epilepsy and two human subjects with refractory epilepsy were 
provided for the competition. However, we only accessed data of the two 
human subjects. For human subject 1, 50 interictal and 18 preictal data 
training data clips were made available while human subject 2 had 42 
interictal and 18 preictal training data clips. Data was sampled at 5000 Hz 
and each iEEG data clip is ten minutes long. 10 interictal and 10 preictal 
ten minutes’ training data clips were randomly selected for each patient and 
used for the study. To reduce computational complexity, the iEEG data clips 
were down sampled to 1000 Hz. Random row concatenation of interictal 
and preictal EEG data clips were then performed to create ten datasets 
for each of the subjects. Lastly, creation of class labels and training and 
test datasets were carried out in the same manner described for the CHB-
MIT EEG data. Figure 3 shows Matlab plots of few samples of randomly 
selected interictal and preictal iEEG signals for the two human subjects.

Feature extraction

The wavelet time scattering network used for feature extraction was 
designed using the wavelet toolbox in Matlab. The toolbox uses the Gabor 
or analytic Morlet wavelet function for signal decomposition. The key 
parameters to specify are the scale of the time invariant, the number of 
wavelet transforms or number of wavelet filter banks, and the number of 
wavelets per octave in each of the wavelet filter banks. In what follows, we 
give a brief description of each parameter and their typical values.

Invariance scale (t)

Scattering framework is invariant to translations up to the invariance 
scale which is a duration. The invariance is provided in the framework by 
application of the scaling filter therefore the time support of the scaling 

Figure 3. Random interictal (INT) and Preictal (PRE) iEEG data samples of (a) 
human subject 1 and (b) human subject 2.
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Figure 2. (a) Interictal and (b) Preictal sEEG data blocks of one patient in the 
CHB – MIT dataset.
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function does not exceed the size of the invariant. The time support of the 
wavelet cannot also exceed the invariance scale therefore, the invariance 
scale also affects the spacing of the center frequencies of the wavelets 
in the filter banks. These considerations suggest that the choice of the 
invariance scale is key to obtaining a good representation and therefore, 
must be carefully chosen. Choosing a suitable invariant scale would require 
a good understanding of the dynamical changes in the signal which is 
lacking in the case of EEG or iEEG. Since our task is to classify as interictal 
or preictal, 1-hour sEEG or 10-minute iEEG segments which represents 
signal from one sEEG/iEEG channel in the patients’ datasets we chose an 
invariant scale of 1 hour for the sEEG data and 10-minute for the iEEG data.

Number of layers or wavelet filter banks (n)

The choice of number of filter banks in the network is usually dictated 
by the fact that energy in the current layer is substantial enough for another 
useful successive layer. 2-layer networks have been shown to be sufficient 
for many applications particularly audio signal classification and intracranial 
EEG signal processing thus two wavelet banks (Figure 4) were used in the 
network [23].

Quality factors (q)

An advantage of continuous wavelet transform over discrete wavelet 
transform is the added flexibility of analyzing signals at intermediary scales 
within each octave. This often allows for a fine scale analysis. The number 
of wavelet per octave in each of the wavelet filter banks is referred to 
as quality factor. The wavelet transform discretizes the scales using the 
specified number of wavelet filters. prescribed 8 and 1 wavelets per octave 
in the first and second layers of the scattering network respectively for 
audio and speech signal processing. These choices of quality factors were 
adopted in the present work.

The scattering transform network S(t,n,q) was applied separately to 
each training/test set in the patients’ datasets. The network treats each row 
(i.e. EEG data from a channel) in the training/test set as a single signal. 
The number of scattering paths and time windows in the representation for 
each signal depend on the choice of t,n and q. With the values t=1 hr, n=2, 
q=[8,1] for sEEG and t=10 min, n=2, q=[8,1] for iEEG the outputs of the 
transform are tensors 1034-by-4-by-k and 951-by-5-by-k respectively which 
are indexed by scattering path, time window and k where k is the number of 
signals (i.e. rows or EEG channels) in each patient’s training/test sets. Each 
page of a tensor corresponds to the scatter transform of a signal therefore, 
an sEEG signal results in a feature matrix of dimension 1034-by-4 while 
an iEEG signal results in a feature matrix of dimension 921-by-5. In order 
to obtain a matrix compatible with the classification algorithm, each multi-
signal scattering transform (i.e. tensor) was reshaped to a matrix where 
each column corresponds to a scattering path and each row is a scattering 
time window. This way, feature matrices of dimensions 4 k-by-1034 and 5 
k-by-921 were obtained respectively for sEEG and iEEG training/test sets. 
Note that each signal in sEEG and iEEG training/test sets has 4 and 5 
different scattering time window representations, respectively. Therefore, 
the class label entries in TrainingLabels and TestLabels were modified to 

match the number of scattering windows. In Figures 5a and 5b we have 
shown sample scattering features derived from one minute interictal and 
preictal EEG signals.

Figure 4. Wavelet filter banks used in the scattering transform network for sEEG.

Figure 5(a). Scattering features derived from 1 min interictal sEEG signal of one 
patient.
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Classifier design

If it is assumed that each signal, y(t) in the training/test sets lies in 
the Hilbert space Hp where p is the number of samples in the signal, 
then wavelet time scattering can be viewed as a map, M that transforms 
y(t) from Hp to F=[f_iƐR^1034,i=1,2,3,4] in the case of sEEG and G=[g_
jƐR^921,j=1,2,3,4,5] for iEEG. The fs of i and gs of j are the different 
scattering time window representations of each signal. The main task here 

is to design a method for the classification of interictal and preictal signals, 
y(t) using their new representations in the F and G domains. Since the 
dimensionalities of the domains of F and G are quite high, we employed a 
linear binary support vector machine classification model in order to reduce 
computational cost. Furthermore, deploying a simple classifier will further 
show the efficacy or otherwise of wavelet time scattering as a good feature 
extractor for interictal and preictal EEG classification. Moreover, it has been 
observed that simple unsupervised feature extraction algorithms, when 
properly tuned, can generate representations of the data that allow even 
basic classifiers, such as a linear support vector machine, to achieve state-
of-the-art performances [24]. 

For the classification task, two analyses were performed, the cross 
validation and held out classification analyses. The latter utilizes both the 
training and test sets while the former utilizes only the training sets.

Cross validation analysis 

The cross validation analysis fits and evaluates a linear binary support 
vector machine using all the scattering data from each training sets (i.e. 
70% of each dataset). There are 4/5 (sEEG/iEEG) scattering sequences 
for each signal in the entire scattering data. The classification accuracy 
is estimated in two different ways using 5-fold cross validation. The first is 
referred to as Ordinary Cross Validation (OCV) analysis. It classifies each 
scattering window from a signal separately as preictal or interictal EEG. 
The second approach which is called True Cross Validation (TCV) analysis 
uses majority vote scheme on the individual scattering windows to make a 
single classification on all the scattering window representations of a signal 
as preictal or interictal EEG [25].

Held out analysis (Test analysis)

TThis fits a linear binary support vector machine only to scattering data 
obtained from the training sets and then uses that model to make predictions 
on the scattering data obtained from 30% held out test set. In the same vein, 
the majority vote scheme was used on the individual scattering windows to 
make a single classification on all the scattering window representations of 
a signal as preictal or interictal EEG. 

The performance metric used to evaluate the classifier is classification 
accuracy. It is defined as follows:

Accuracy (%)=(True Positives+True negatves)/(True Positives+False 
Negatives+True Negatives+False Positives)×100

where true positives and false positives are the number of samples 
correctly and incorrectly classified as preictal samples respectively while 
true negatives and false negatives are the number of samples correctly and 
incorrectly classified as interictal samples respectively. The cross validation 
and held out analyses gave rise to three different sets of classification 
accuracy values namely, Ordinary Cross Validation (OCV), True Cross 
Validation (TCV) and test (Test) classification accuracy values [26]. 

Results

Results of the classification experiments detailed in the last section are 
presented in Table 1. The upper section gives results for patients in the 
CHB-MIT scalp EEG dataset while the lower section gives results for the 
two human subjects in the AES intracranial EEG dataset. The reported 
classification accuracy value for each patient is the average of the 
classification accuracy values obtained from each dataset created for 
the patient. The number of datasets for a patient in the CHB-MIT dataset 
corresponds to the number leading seizure segments contained in the 
patient’s EEG recording. However, each of the two patients in the AES 
dataset has ten datasets. Classification accuracy values obtained in the 
three different classification schemes are presented for each patient. The 
last row of the upper and lower sections of Table 1 gives the averages of the 
accuracy values for each classification schemes. 

Figure 5(b). Scattering features derived from 1 min preictal sEEG signal of one 
patient.
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Data 
source 

Patient id case No of 
patients 
dataset 

Average classification 
accuracy ( %)

Ordinary 
CV

True CV Test

CHB – MIT 
sEEG

1 1 2 89.56 95.86 83.12

2 2 2 91.22 98.45 90.56
3 3 2 94.16 96.43 95.15
4 4 3 88.72 92.34 89.44
5 5 3 93.54 99.01 88.54
6 6 4 95.23 100 94.34
7 7 1 92.34 98.88 90.05
8 9 2 96.23 99.45 91.56
9 10 3 90.98 98.76 91.22
10 12 4 94.12 96.66 89.46
11 13 2 89.45 92.57 88.34
12 14 2 97.23 100 95.03
13 15 4 89.35 96.23 87.32
14 18 2 96.12 100 94.43
15 20 2 97.43 100 97.19
16 22 2 90.32 94 91.23
17 24 3 97.56 100 95.66
Avg 93.15 97.57 91.33

AES iEEG 1 1 10 96.65 100 95.46
2 2 10 100 100 98
Avg 98.33 100.00 96.73

OCV, TCV and test accuracy results 

CHB – MIT dataset: The mean interictal and preictal EEG classification 
accuracy for the ordinary cross validation experiment is 93.15%. The best 
OCV accuracy values are obtained for patients 6, 9, 14, 18, 20 and 24 
with OCV accuracy values >95% while patients 1, 4, 13 and 15 recorded 
the least OCV accuracy values with 89.56%, 88.72%, 89.45% and 89.35% 
respectively. The OCV accuracy values is >90% in nearly all the patients. 

The true cross validation classification experiment gave interictal and 
preictal EEG classification accuracy mean of 97.57%. This is remarkably 
very high. All the interictal and preictal EEG signals in the datasets of some 
patients specifically, patients 6, 14, 18, 20 and 24 are correctly classified. 
Furthermore, the TCV classification accuracy value is >92% for all the 
patients.

A mean test classification accuracy value of 91.33% was obtained from 
the test classification experiment. The highest test classification accuracy 
result of 97.19 was realized in patient 20 while the lowest test accuracy 
value of 83.12% was obtained in patient 1. Test accuracy values >95% was 
recorded in approximately 24% of the patients.

AES dataset: The results of the OCV, TCV and Test classification 
experiment ran on the AES dataset showed that patient 1 recorded OCV, 
TCV and Test classification accuracy values of 96.65%, 100% and 95.46% 
respectively while for patient 2 OCV, TCV and Test classification accuracy 
values of 100%, 100% and 98% respectively were obtained. For the two 
patients the mean OCV, TCV and Test classification accuracy values are 
98.33%, 100% and 96.73%.

Comparison of OCV, TCV and test classification results

Figure 6a is a plot which compares OCV, TCV and Test classification 
accuracy results obtained for each of the patients in the CHB-MIT sEEG 
database. It clearly shows that for all patients, results from the TCV 
classification experiment are consistently higher than the corresponding 
values obtained from OCV and Test classification experiments. Although 
the OCV accuracy values are higher than the Test accuracy values in most 
of the patients, there are occasional overlaps specifically the Test OCV 
accuracy values are higher in patients 3, 4, 9 and 16. OCV, TCV and Test 
accuracy values are very close in seven patients namely patients 3, 4, 11, 

12, 15, 16 and 17. A box and whiskers plot comparing the spread of the 
OCV, TCV and Test classification results across all the 17 patients is shown 
in Figure 6b. The maximum, median and the minimum accuracy values 
clearly shows that the TCV accuracy results exhibit very low variability. On 
the other hand, OCV accuracy values show moderate variability while Test 
accuracy results gave the most variability.

Discussion

Deep CNNs versus scattering transform plus simple 
classifier for classification task

EEG analysis has been an important tool in neuroscience and neural 
engineering and many of the analytical tools used in EEG studies have used 
machine learning to uncover relevant information from neural activities. 
Specifically, deep convolutional neural networks have recently been 
employed in several EEG classification task. Deep CNNs can automatically 
uncover useful discriminatory features for any classification task from raw 
input data but they have lots of tunable hyperparameters thus requiring 
huge training dataset and computational resources. On the other hand, 
group invariant scattering or wavelet time scattering can learn useful data 
representation from raw input data with few example data from each data 
class. In this study, sEEG and iEEG features learned through wavelet time 
scattering were combined with a linear support vector machine in order 
to classify interictal and preictal EEG signals. In Table 2 we compare the 
results obtained in this work with performance outcomes of deep CNNs 
on different EEG classification tasks reported in recent studies. The 

Figure 6(a). Comparison between OCV, TCV and Test classification accuracy values.

Figure 6(b). Comparison between the spread of OCV, TCV and Test classification 
accuracy values.

Table 1. Classification Accuracy results.
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classification tasks covered include emotion recognition, motor imagery, 
mental workload, seizure detection, event related potential detection, and 
sleep stage scoring. The CNNs’ architecture, activation function and data 
input formulation used in these tasks vary widely. 

Reference Classification 
task

No. of 
subjects

Length of 
EEG data

Performance 
outcome 
(accuracy), %

Antoniades 
et al.

Seizure 
detection 

25 0.68 hr 87.5

Ullah et al. Seizure 
detection 

5 4097
Samples

99

Antoniades 
et al. 

Seizure 
detection 

18 6 hr 89

Acharya et al. Seizure 
detection 

10 3.3 hr 88.7

Vilamala et al. Sleep scoring 19 304 hr 86
W ei et al. Seizure 

detection 
13 336 hr 90

Abbas & Khan Motor imagery 9 1.44 hr 61
Tabar & Halici Motor imagery 9 0.77 hr 75.1
Pereira et al. Event related 

Potential 
66 25.7 hr 81

Liu et al. Event related 
Potential

- 27.7 hr

Moon et al. Emotion 
recognition 

32 21.3 hr

Ang & Guan Mental 
workload 

120 20 hr

Jiao et al. Mental 
workload 

15 1 hr 90

Zouth et al. 
(2018)

Seizure 
detection 
(iEEG) 

21 - 96.7

Seizure 
detection 
(sEEG) 

23 - 95.6

This work

Seizure 
detection 
(sEEG) 

17 43hr 97.6

Seizure 
detection 
(iEEG)

2 40hr 100

       The number of subjects studied and length of EEG data analyzed also 
vary. Furthermore, the performance metric reported is the highest accuracy 
achieved in the classification tasks. The TCV classification accuracy values 
which were the ones reported for the current study are obviously higher 
than the accuracies obtained from other studies. This observation is quite 
remarkable considering the fact that a very simple classification algorithm 
was deployed for the classification task. Moreover, in the dataset preparation 
stage, data from all EEG channels were taken as interictal/preictal signals 
(i.e. no channel selection). This might not be true for patients whose 
seizures are categorized as focal seizures. Focal seizures are usually 
confined to a particular region of the brain and therefore, only recording 
electrode attached to the specific region will pick up preictal signals of 
upcoming seizure events. On the other hand, generalized seizures affect 
the whole brain region and as such all recording electrodes can pick up 
preictal signals of upcoming generalized seizures. Since no information 
concerning the type of seizures were made available in the MIT-CHB and 
AES datasets we assumed generalized seizures for all patients. Given 
this assumption, one would expect that our method will exhibit a relatively 
low performance but the reverse is the case. This shows that wavelet time 
scattering is not only good at learning useful features but also very robust 
to little errors.

OCV, TCV and test accuracy values

In order to access the utility of wavelet time scattering as a good 
feature extractor for interictal and preictal EEG brain state identification, 
we designed a simple classification algorithm using EEG features derived 
from wavelet time scattering. Three different classification schemes were 
used to access the performance of the classifier and hence suitability of 
wavelet time scattering for the classification task. The TCV classification 
scheme gave the best accuracy values across all patients and it is closely 
followed by OCV classification scheme. Although the Test classification 
scheme gave the least classification accuracy values, these values cannot 
be described as too low. This observation (i.e. discrepancy in classification 
accuracies) may be explained in the light of the amount of training data 
the classifier was exposed to in the classification schemes. In the TCV 
and OCV classification schemes the classifier trained on every interictal 
and preictal signal. Since the classifier had a feel of every single training 
data, it tends to create a decision boundary/surface that supports good 
generalization. However, the reverse is the case for Test classification 
scheme. Only a fraction of the interictal and preictal signals were presented 
for training the classifier resulting in low generalizing ability. For instance, 
Figures 7a and 7b are scatter plots of the training data (showing the support 
vectors) in an already trained SVM classifier for a patient in the CHB-MIT 
dataset. In order to obtain a 2D display, the classifier was trained using 
scattering coefficient sequences along only two scattering paths. Scattering 
coefficients in corresponding positions along the paths were plotted 
against each other for each data point. In Figure 7a the SVM classifier 
was trained with scattering coefficients form five interictal and five preictal 
signals while the SVM classifier in Figure 7b was trained with twice as much 
signals. The support vectors are placed in the black circles. It is observed 
that the classifier in Figure 7b having learned from more data examples 
has identified more support vectors. Support vectors are data points that 
lie on or cross the boundary between the two data classes (i.e. interictal 
and preictal) therefore, they dictate the shape of the decision boundary 
learned by the classifier. They are also in some manner instrumental to 
how well the classifier generalizes to data points outside those used to 
train the classifier. This observation also shows that, although wavelet time 
scattering can learn useful data representation for classification task from 
few examples from each data class, having a fairly large example data from 
the data classes may improve the quality of features leaned using wavelet 
time scattering.

sEEG vs. iEEG 

Two different forms of EEG data, scalp EEG and intracranial EEG 
data, were used in this study. Although data from only two patients were 
available for analysis in the AES iEEG dataset, the average classification 
accuracy results obtained are higher for iEEG data than the sEEG data. 
Two factors may be responsible for this observation. Firstly, it may be 
explained in terms of the advantages of iEEG recordings over sEEG 
recordings. iEEG recordings has high signal to noise ratio. Furthermore, 
it is a localized recording of the brain activity which minimizes unwanted 
interferences from other brain sites on the signals recorded from the region 
of interest. However, it has been argued that although scalp EEG recording 

Figure 7. Scatter plots of the training data (showing the support vectors) of an SVM 
classifier trained with (a) five (b) ten interictal and preictal EEG signals.

Table 2
scattering features + SVM classifier on EEG classification tasks.

. General Comparison between the performance of deep CNNs and 
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cannot provide localized neuronal potential activities, it can present a 
more generalized spatiotemporal view of brain’s dynamical system. The 
classification accuracies for the iEEG data may also be higher if the seizure 
events in the two patients are generalized. This means that preictal changes 
in the recordings are present in all the recording channels making it easy for 
the wavelet time scattering network to learn more discriminatory features for 
the classification tasks. 

Implication of classification results for seizure prediction 
algorithms

Algorithms that aim at the identification of preictal brain state sufficiently 
long before electrographic seizure onset are referred to as seizure prediction 
algorithms. The classifier is the component of a seizure prediction algorithm 
that decides which EEG signal epochs are preictal and then triggers 
other post processing operations. This makes interictal and preictal EEG 
classification system the backbone of any seizure prediction algorithm. 
Efforts at accurately classifying interictal and preictal EEG signals had seen 
many researchers using domain knowledge to extract EEG features in the 
hope that these hand-crafted EEG features would serve as consistent preictal 
brain state markers. However, when it appeared that no single feature or 
group of features could serve as a consistent preictal brain state marker, 
the idea of building classification systems that can automatically learn 
useful discriminatory features from raw input data became popular. Various 
deep learning architectures such as Convolutional Neural Networks, Deep 
Belief Networks and Recurrent Neural Networks that are capable of feature 
learning have been used in many seizure prediction algorithms. Although 
these seizure prediction algorithms displayed very promising prediction 
performances, they are however highly computationally expensive and 
depend upon very large training datasets thereby requiring high power 
consumption for their operations. But, if seizure prediction algorithms 
eventually proved to be successful, they would most likely be implemented 
in a portable and implantable device which must operate on low power in 
order to drastically reduce routine maintenance and remain convenient for 
the patients and care givers. 

 Interestingly, wavelet time scattering is an automatic feature 
learner with relatively simple configuration and architecture which is capable 
of revolutionizing the manner in which the herculean task of actualizing 
a robust and consistent seizure prediction algorithm is being pursued. 
We have demonstrated in this study that the combination of wavelet 
time scattering based EEG features and very simple machine learning 
algorithms can produce excellent interictal and preictal EEG classification 
accuracy results for epileptic patients. Hopefully, leveraging the highlighted 
advantages of wavelet time scattering could pave the way for very powerful 
and consistent seizure prediction algorithms.

Conclusion

If implemented within a closed-loop intervention system equipped 
with efficient seizure-aborting strategies, seizure prediction algorithms 
may prove useful as an alternative therapeutic strategy for epilepsy. On 
the other hand, an interictal and preictal EEG classification system that is 
highly sensitive and specific is essential for a successful seizure prediction 
algorithm. The efficacy of a relatively new and simple feature learner – 
wavelet time scattering for interictal and preictal EEG classification was 
studied. Features learned through wavelet time scattering from raw sEEG 
and iEEG data were used to train and evaluate a linear support vector 
machine classifier. The three different classification experimental schemes 
carried out resulted in very high classification accuracy values despite using 
a very crude and simple linear classifier. Therefore, research efforts that 
may produce even better results include extensive parameter sensitivity 
analysis of the wavelet time scattering network and investigation of other 
classification algorithms which may be optimized for each individual patient. 

 Finally, the results obtained here when properly harnessed may 
have significantly positive impact on the realization of the long awaited 
clinically deployable seizure prediction algorithm. Therefore, an important 

future direction of this study is the development of a seizure prediction 
algorithm which leverages our interictal and preictal EEG classification 
efficiency.
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