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Introduction
The Hartmann layer is a significant element of 

magnetohydrodynamics (MHD). It is defined as the flow of an 
electrically conducting fluid along any boundary in the constant 
magnetic field that is not tangential to the boundary. The shear stress 
in such flow was mainly studied [1]. Models of Hartmann layers are 
used in many situations, for example Hartmann boundary layer 
models study the transmission of heat and mass transfer of the fluid. 
Similarly, the global electric circulation is afflicted and the flow can 
completely change its nature and anxiety, if a laminar Hartmann layer 
is destabilized as it was shown [2].

In general, an influence of magnetic field to a boundary layer leads 
to two results on the layer stability. The first one is that magnetic field 
accelerates perturbations through Joule dissipation. The second one 
is the impact on the laminar velocity profile and hence on the critical 
wave number value. In particular, in the field of crystal disturbance, a 
steady magnetic field is used to stabilize the flow i.e, it minimize the 
instability [3]. There should be some condition on magnetic field to be 
used to achieve the stability of Hartmann layers. In this work, we study 
some conditions on magnetic field which can be used to bring more 
stabilizing effects on the Hartmann layers. The results proposed in this 
work show some direction for proof.

In quantitative evaluation, the stability of the Hartmann layer can 
help to impove the understanding of the global magnetic field damping 
source [4]. In the fusion reactor scheme, a so-called liquid metal 
blanket surrounds the plasma and is subjected to a strong magnetic 
field. The natural convection, which develops due to the large heat flow, 
produces maximum speeds and therefore the stability of the Hartmann 
layer should be explored. Finally, the case of MHD two-dimensional 
disturbance theory is associated with the Hartmann layer case. It is 
usually assumed that the layer is laminar and therefore easily obtains 
a linear damping force acting on the two-dimensional disturbance. 
If, however, the Hartmann layer becomes unstable, this linear term 
should be changed by another model [5].

A study [6] has considered the three-dimensional 
magnetoconvection disturbance for Rayleigh number = 107 in 
liquid gallium for very large external normal magnetic fields in direct 
numerical approximation by using quasistatic approach. They found 
that the instabilty of the convection flow decreases for some critical 
Hartmann numbers. The article [7] investigates a model for the 
turbulent Hartmann layer based on Prandtl’s mixing length model 
without adding arbitrary parameters. The authors found an exact 
expression of the displacement thickness of the turbulent Hartman layer.

In the present article, as usual, an unstable eigenvalue is an 
eigenvalue in the complex upper half plane, related to an eigenmode of 
the linearised problem that grows exponentially as a function of time 
t. It is natural to expect that a flow will behave unstably if and only if 
there exists such a growing eigenmode, and over the years much has 
been learned about which flows possess such modes. Corresponding 
distinctions in flows depend on the geometry, the Reynolds number, 
and sometimes other parameters.

As for numerical simulations, a study [7] used collocation method 
for strong magnetic field similarly to the Orr Sommerfeld system. 
Linear temporal stability analysis was investigated [8] to find the 
time expansion of small 2-dimensional disturbance was applied to 
the basic flow. The magnetic field influence was used by to investigate 
the instability of electrically conducting fluid. QR and QZ methods 
are considered to solve the complete eigenvalue technique [9]. It was 
found that the stabilizing effect of the slip on the MHD flow is strong, 
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although the slip length is very small if compared to the thickness of 
the Hartmann layer.

A careful survey of available literature reveals that even numerical 
studies of the stability of the basic flow and the growth of the small 
disturbance of plane Hartmann flow under magnetic field are still 
exploreable. Exact solutions in this field are also in scanty number. 
The solution proposed in this paper is applicable to the instability 
of the Hartman flow of an electrically conducting fluid under the 
influence of normal magnetic field. We are going to determine the 
equations which define the disturbance growth using the plane waves 
perturbation approach. The results should be qualitatively agreed with 
the experimental results of some articles [10,11], where the stability of 
these nonlinear problems in high frequencies was explored.

The article is organized as follows. In Section 2 we develop the 
mathematical model of the considered physical system. The solution of 
the corresponding system of differential equations is made in Section 
3. Section 4 presents some discussions and summarizes the results of 
the article.

Mathematical Problem Formulation
We consider the magnetohydrodynamic instability of an electrically 

conducting, incompressible, and viscous fluid of Hartman flow in the 
presence of transversal magnetic field. The fluid is placed between 
upper and lower parallel plates by distance 2L. The fluid is flowing in 
the y-direction whereas velocity gradient is along x-axis. The uniform 
magnetic field applied in x-direction as presented in Figure 1.

The problem can be modelled by Navier-Stokes equation with 
external magnetic field. We use the following notations: the vector field 
of velocities is v, the electric current density is the vector field j, p is 
scalar function of the pressure and φ is electric scalar potential.

The governing equations for the model can be written as

0vÑ =                      (1)

( ) 1. 1,0,0Rev v v p v N jt
é ùæ ö÷ê úç ÷ç ÷÷çê úè øë û

¶ Ñ =-Ñ + ×D + × ´                   (2)

0jÑ =                     (3)

( )1,0,0j vf=Ñ + ´                     (4)

The boundary conditions for the system are assumed as

( )1 0v x-± =                      (5)

and the electric potential φ satisfies Poisson’s eqns. (3) and (4) and 

satisfies following boundary conditions

| 1 0x xf =±¶ =                                     (6)

The problem is described by two parameters: Reynolds number Re 
and interaction parameter 2

Re
HaN = , where Ha represents Hartmann 

number, determined by the definition of

0Ha BL vsr= ,

Where σ, ρ and vo are electric conductivity, mass density and 
kinematic viscosity, respectively. As for magnetic magnitude B and 
size L, these values are equal to 1 in this work to make the simple 
speculations.

To start with the 2-dimensional problem: all functions treated 
as independent on z and perturbations are also depend on t,x,y only. 
It is shown further that there is no instability appears in this model 
with plane waves perturbations. Hence, to describe the observable 
phenomenas, the 3-dimensional case should be considered.

Solutions of the Governing Equations
Two dimensional case

Let us denote

( ), ,u v w=v

When none function depends on z we have from (1-4) the following 
system of scalar equations:

0u vx y¶ +¶ =                    (7)

( ) ( )1u u v u p u ux y x xx yyt Re¶ + ¶ + ¶ =-¶ + × ¶ +¶                  (8)

( ) ( )1v u v v p v v Nvx y y xx yyt Re¶ + ¶ + ¶ =-¶ + × ¶ +¶ -         (9)

( ) ( ) ( )1w u v w w w N wx y xx yy yt Re f¶ + ¶ + ¶ = × ¶ +¶ + × -¶    (10)

( ), ,j w vx yf f= -¶ -¶ + - .                 (11)

with boundary conditions (5) and (6). In stationary case we can use 
Hartmann’s [12] solution which takes the following form with respect 
of the notations above:

cosh cosh
1 cosh
Ha x HaV Ha

× -=
-

.                  (12)

The perturbed equation near the stationary Hartman solution are 
considered as

( )ˆ
i ky t

u u x e
wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

-
=                  (13)

( ) ( )ˆ
i ky t

v V x v x e
wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

-
= +                   (14)

( )ˆ
i ky t

w w x e
wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

-
=                  (15)

( )ˆ
i ky t

p Py p x e
wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

-
=- +                  (16)

( )ˆ i ky t
x e

w
f f

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø
-

=                   (17)

Where V(x) is determined by (12) and xϵ[-1;1].

From (13-14) and (7) we have:

0ˆ' ,ˆu ikv+ =                   (18)

where ˆˆ' duu dx= .  Use of (13), (14) and (16), eqn. (8) gives
Figure  1: Geometry and coordinates for Hartmann flow of electrically 
conducting fluid.
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ1' ' '' 2 ˆ
i ky t

u ikv ue i u p u k u ikVuRe
w

w
æ ö÷ç ÷ç ÷ç ÷ç ÷çè øæ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

-
+ = - + × - - .

which further gives

1 '' 2ˆ ˆ ˆ ˆ 'ˆi u u k u ikVu pRew æ ö÷ç ÷ç ÷çè ø
+ × - - = .

Similarly, substituting (13), (14) and (16) in (9), we obtain

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

1 1'' 2

1' 2

i ky t
i v V u ikVv ikp v k v Nv eRe Re

i ky t i ky t
uv ikv e e P V NVRe

w
w

w w

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

æ ö÷ç ÷ç ÷ç ÷çè ø

æ ö÷ç ÷ç ÷çè ø

-
- + + + - × + × + +¢

¢¢
- -

+ = + × -

Right side of latter equation is zero if coshP 1 cosh
HaN Ha=-

- .

Hence

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1'' 2 'ˆ ˆ2 0
i ky t

i v V u ikVv ikp v k v Nv uv ikv eRe Re
w

w
æ ö÷ç ÷ç ÷ç ÷ç ÷çè øæ ö÷ç ÷ç ÷çè ø

-
- + + + - × + × + +¢ + =  ,

Comparing y and t term, we get

ˆ ˆ ˆ' 2 0uv ikv+ = ,

we further get

ˆ ˆ ˆ' ' 0ˆuv u v- = .                    (19)

Similarly, from (10), we have

ˆ ˆ ˆ' ' 0ˆuw u w- = .                 (20)

Generally the functions ˆ ˆ ˆ, ,u v w can be obtained from (18-20) 
through integration, as

ˆ ˆ1 1 1, , 1 3 3 2 3ˆ
ik ik ikx x xa a a

u a a e v a e w a a e
- - -

= = =
,                     (21)

Where , ,1 2 3a a a Î  are some constants. Note, that this result is 
obtained without using any condition, i.e., from wave perturbation 
eqns. (13)-(17) and MHD Navier-Stokes eqns. (7)-(11).

Combining (3), (11), (14), (15) and (17), we come to the following 
equation

ˆ ˆ'' 2 1 02 3
ika x

k ika a ef f
-

- + + =

with general solution

2 3 1
2 11

ˆ ia a ika xkx kxAe Be e
k a

f
æ ö÷ç ÷ç ÷÷çè ø

--= + -
+

.

This expression shows that no boundary conditions are necessary.

Now the eqn. (7) is identity and eqns. (8)-(10) turn to the next:

ˆ ˆ ˆ1 ' 'ˆ' ˆ2i u u k u ikVu pRew æ ö÷ç ÷ç ÷÷çè ø
+ × - - =                   (22)

1ˆ ˆ ˆ ˆ ˆ 1'' 2 0ˆ ˆi v V u ikVv ikp v k v NvRe Rew- + + + - + +¢ × × =               (23)

1 '' ˆˆ ˆ ˆ2ˆ ˆi w ikVw w k w N w ikRew fæ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷÷÷ çç è øè ø
- + = × - + × - .                (24)

Using relation (21) we have

1 12 '11 1 32
1

ˆ
ik xa

i k ikV a a e pRe a
w

æ öæ ö ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ÷ç ÷ ÷ç ÷ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷÷ç ÷ç è øè ø

-
- × + - =                   (25)

1 1 2 11  1 32
ˆ

1

ik xa
i V a ikV k N a e ikpRea
w

æ öæ ö ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ÷ç ÷ ÷ç ÷ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷÷ç ÷ç è øè ø

-
- + + + + × + =¢ -                     (26)

1 12 11 22
ˆ

3
1

ik xa
i ikV k N a a e iNkRe a
w f

æ öæ ö ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ÷ç ÷ ÷ç ÷ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷÷ç ÷ç è øè ø

-
- + + × + - =-                          (27)

Differentiating eqn. (26) and recalling that 
Re

NV PV -¢¢= , (25) 
gives the following relation

12 2 2 2 3 21 1 1 01 1 1 12
1

N P iV a k a a ikN k k aRe Re Re a
w

æ öæ ö÷÷ç ç ÷÷ç ç ÷æ ö ÷æ ö æ öç ç ÷÷÷ç ç÷ ÷çç ç÷÷÷ç ÷ ÷ç ç ÷ç ç÷÷÷ ÷ç ç ÷ç÷ ÷ ÷ç ÷ ç÷ç è ø è ø÷ç ÷çè ø ÷÷ç ç ÷÷ç ç ÷ç ÷ç è øè ø

+ + - - - + × + + =

From here, separating constants and variables, we have

2 2 2 1 01 1
N a k aRe

æ ö÷ç ÷ç ÷÷çè ø
+ + =

12 3 21 1 01 12
1

P ia ikN k k aRe Re a
w

æ öæ ö÷÷ç ç ÷÷ç ç ÷÷ æ öç ç ÷÷ç ÷ç ç÷÷ ÷ç ç ÷ç÷ ÷ç ÷ç ÷ ÷çè ø÷ç ÷ç ÷÷ç ç ÷÷ç ç ÷ç ÷ç è øè ø

- - - + × + + =

Now we can calculate a1 and ω as

22
1 2 2

ka
Ha k

=-
+

cosh 2
cosh 1

Ha ik kReHaw= - ×
-

,                 (28)

and as a result, the imaginary part of thew is
2

0k
i Rew =- <                    (29)

This means that the flow is always stable.

Thus in case of plane waves perturbations, we have an exact solution 
(21), (26) and (27) of the system (7-11) without any turbulance. The 
turbulence can exist in the case of three dimension flow, by using the 
same technique. Let us come to 3-dimensional case.

Three dimensional case

To consider the non-restricted (by dimension) solution of the eqns. 
(1)-(6) it is natural to use the same perturbation idea but include wave 
with z coordinate:

 ˆ ˆ, ˆ,
i mz ky t i mz ky t i mz ky t

u ue v V ve w we
w w wæ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

+ - + - + -
= = + =

, (30)

ˆ
i mz ky t

p Py pe
wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

+ -
=- + ,                   (31)

ˆ i mz ky t
e

w
f f

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø
+ -

= ,                  (32)

all the functions depend on x with the same stationary solution 
Vdetermined by (12). The eqns. (1)-(5) now take the form

0u v wzx y¶ +¶ +¶ =                 (33)

( ) ( )1u u v w u p u u uz zzx y x xx yyt Re
¶ + ¶ + ¶ + ¶ =-¶ + ¶ +¶ +¶  (34)

( ) ( ) ( )1v u v w v p v v v N vz zz zx y y xx yyt Re f¶ + ¶ + ¶ + ¶ =-¶ + ¶ +¶ +¶ - ¶ + , (35)

( ) ( ) ( )1w u v w w p w w w N wz z zzx y xx yy yt Re f¶ + ¶ + ¶ + ¶ =-¶ + ¶ +¶ +¶ + ¶ -   (36)

0w vzz zxx yy yf f f-¶ -¶ -¶ +¶ -¶ = .               (37)

After substitution of the eqns. (30)-(32) into the system (33-37) 
and all simplifications which are similar to those for 2-dimensional 
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case, we correspondingly derive the following equations for the flow

ˆ ˆ' 0ˆu ikv imw+ + = ,                   (38)

1' '' 2 2ˆ ˆ ˆ ˆ ˆ ˆi u ikVu p u k u m uRew æ ö÷ç ÷ç ÷÷çè ø
- + =- + - - ,             (39)

ˆˆ ˆ ˆ ˆ ˆ ˆ1 '' 2 2 ˆ ˆi v V u ikVv ikp v k v m v N im vRew fæ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷÷÷ çç è øè ø
- + + =- + - - - +¢ , (40)

ˆ ˆ ˆ ˆ' ' 0uv vu- = ,                    (41)

ˆˆ ˆ ˆ ˆ ˆ ˆ1 '' 2 ˆ2i w ikVw imp w k w m w N ik wRew fæ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷÷÷ çç è øè ø
- + =- + - - + - , (42)

ˆ ˆ ˆ' ' 0ˆuw u w- = ,                   (43)

'' 2 2ˆ ˆ ˆ ˆ 0k m ikw imvf fæ ö÷ç ÷ç ÷÷çè ø
- + - + =                  (44)

And therefore for functions ˆ ˆ ˆ, ,u v w we have the next system

' ' ' ' '0,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 0ˆ ˆ, ˆu ikv imw uv u v uw u w+ + = - = - = .               (45)

It can be easily integrated and the general solution is

2 3 2 3ˆ 2 3, , 1 ˆ 3ˆ1 2 1
ika ima x ika ima x ika ima x

u a e v a a e w a a e
æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

- + - + - +
= = =   (46)

Substituting these values in eqns. (39) and (42), we find that

2 20, 2 3ka ma Ha k m+ = = +  .                  (47)

Thus the solution for the system (38-39,41-44) is

1, , 2ˆ ˆ ˆ 2
ku v a w am= = =- ,                   (48)

1 sinh1 cosh
ˆ ikp Ha xHa Ha=- ×

-
,                 (49)

1 12 2cosh sinh1 cosh 1 cos
ˆ

h
ka iaimHa x Ha x mNm N HaHa Haf=- × - × +×- -

, (50)

cosh 2
1 cosh

Ha ik HaReHaw=- -
-

.                   (51)

The eqn. (40) is satisfied if Ha=0, but physically useless. The similar 
result can be obtained by solving the system (38-40,42-44), then we 
have

( ) ( )
2 21 2 2sinh cosh

1 cosh 1 c
ˆ

osh
ka iaiHa ik Ha x Ha x mNm Ha Ha N m Haf

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

+= × - × +
× - × -

instead of (50).

Therefore, the classical plane wave perturbations leads to no 
solution and give no physical meanings. In the next section, we obtain 
analytical solution between critical wave number kc and and Hartmann 
number Ha. The litrature shows that MHD equation are solved only 
numerically and we have sovled the exact solution of Navier stokes 
equations by using quaternionic method.

Three dimensional case: quaternionic plane waves

For physical relevant solution in 3D case, we change the wave 
perturbation equations. To make the model more simple, we use 
complex representation instead of the trigonometric real functions. In 
the case of eqns. (1-6) the complex model does not give any solution 
because one of the equations does not satisfy. We can try to use the 
quaternionic plane waves instead of complex perturbations and 
therefore the new system takes the form:

 ˆ ˆ, ˆ,
i jmz ky t i jmz ky t i jmz ky t

u ue v V ve w we
w w wæ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç çè ø è ø è ø

+ - + - + -
= = -+ = , (53)

ˆ
i jmz ky t

p Py pe
wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

+ -
=- +  ,                    (54)

ˆ i jmz ky t
e

w
f f

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø
+ -

=
,                     (55)

Where, j is another one imaginary unit and ij=-ji and ω= ωr + jωj is 
some complex value with j imaginary unit. The physical values are real 
as well as in the complex case.

When the quaternionic plane waves perturbations (53-55) are 
replaced in system (1-6), we have the following equations instead of 
(38-44)

ˆ' 0ˆ ˆu vik wijm+ + = ,                    (56)
1' '' 2 2ˆ ˆ ˆ ˆ ˆ ˆui Vuik p u k u m uRew æ ö÷ç ÷ç ÷÷çè ø

- + =- + - - ,                (57)

ˆ ˆ ˆ' ˆ ˆ ˆ 0
i jmz ky t i jmz ky t i jmz ky t

ue u ve uik we uijm
w w wæ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç çè ø è ø è ø

+ - + - + -
+ + = , (58)

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 '' 2 2 ˆvi V u Vvik pik v k v m v N ijm vRew fæ öæ ö ÷÷ çç ÷÷ çç ÷÷ çç ÷÷ çç ÷ ÷çè ø è ø
- + + -¢ = + - - - + ,  (59)

' 0ˆ ˆ ˆ ˆ ˆ ˆ
i jmz ky t i jmz ky t i jmz ky t

ue v ve vik we vijm
w w wæ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ÷ ç ÷ ç ÷÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

+ - + - + -
+ + = ,  (60)

1 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ'' 2 2wi Vwik pijm w k w m w N ik wRew fæ öæ ö ÷÷ çç ÷÷ çç ÷÷ çç ÷÷ çç ÷ ÷çè ø è ø
- + =- + - - + - , (61)

' 0ˆ ˆ ˆ ˆ ˆ ˆ
i jmz ky t i jmz ky t i jmz ky t

ue w ve wik we wijm
w w wæ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷çç çç ççè ø è ø è ø

+ - + - + -
+ + = ,  (62)

ˆ ˆ ˆ ˆ'' 2 2 0k m wik vijmf fæ ö÷ç ÷ç ÷ç ÷ç ÷è ø
- + - + = .                  (63)

Similar technique, as used in Section 3.2, can be applied to 
solve the latter system but it is necessary that the exponential factor

( )i jmz ky te w+ - is commutative with  imaginary unit. Then the 

solution becomes

i jmz ky t
u e

wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø
+ -

=
,                     (64)

cosh cosh
21 cosh

i jmz ky tHa x Hav ia eHa
wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

+ -× -= +
-

,                       (65)

2a k i jmz ky t
w ijem

wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø
+ -

=- ,                  (66)

sinh 222 2 2 21 cosh
kNa i jmz ky tkHa Ha xp Py i eHak m k m

wæ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

+ -×=- + -
-- -

, (67)

2 221 1 1 22 cosh sinh 21 cosh 1 cosh
a k ma k i jmz ky tm ii Ha x Ha x jem N N HaHa Ha Ha

w
f

æ ö÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ççè ø

æ öæ ö÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷æ ö æ ö ÷ç ÷ç ÷÷ ÷ç ç ÷ç ÷ç ÷ ÷ è øç ç ÷ç ÷ ÷ç ç ÷÷ ÷ç ÷ç ç÷ ÷ç ÷ç ç÷ ÷ç ÷÷ ÷ç çç ÷ ÷ ÷ç çè ø è ø ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

- + -
=- × - × -

×- -
÷ . (68)

These functions lead to solve identities all the eqns. (1-5) in 
quaternionic formulation. Also we have the following expressions for 
ω components:

2cosh
, 

1 cosh

Ha Ha
k r iHa Re

w w=- =-
-

æ ö÷ç ÷ç ÷çè ø
.                   (69)

The eqn. (6) can be obtained through special value of 2a Î  . But 
in the expression

( )

( )

22cos cos atan

22sin sin atan

mz tij mz t i ky tr jje ky t mz t ir j ky tr
mz tjky t mz t ijr j ky tr

ww w
w w

w

w
w w

w

æ ö÷ç æ ö÷ç ÷÷ çç ÷÷ çç ÷÷ çç ÷÷ ç ÷÷ç ç ÷÷ç ÷÷ çç è ø÷ç ÷çè ø

æ ö÷çæ ö ÷ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷çè ø ç ÷÷çè ø

æ ö÷çæ ö ÷ç ÷÷ç ç ÷÷ç ç ÷÷ç ç ÷÷çè ø ç ÷çè ø

-- + -
= - + - +

-

-
- + - +

- ( )
22sin ky t mz tr jw wæ ö÷ç ÷ç ÷ç ÷çè ø÷

- + -

 , (70)

which is the Euler’s formula analogue, the real part should be zero. 
From above relation we have
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( )
2 22 , 2ky t mz t n nr j

pw w pæ ö æ ö÷ç ÷ç÷ç ÷ç÷ ÷ç ÷ç÷ç è øè ø
- + - = - Î .                  (71)

Solving (71) for t, we find

22 2
2t ky mz n ky mzn r rj j
pw w p w w wæ öæ ö ÷ç÷ç ÷ç÷ç ÷÷ ç÷ç ÷çè ø è ø

= + ± - - - .                 (72)

Let us denote the fixed value of y,z and t by ξ,η,τ-respectively and 
we write

k j
m r

w
h xw=

Then

, , 0t n t y n z nn n nt x h= + = =

and it is easy to show from (72) that

2
2t n kn r

w pwx pww

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷çè ø

= ± ±

i.e.
2

k
r

wt x pww= ±  .                   (73)

When we turn back to the continious range of t, we should put
0t = Otherwise our solution functions are not continious. From (73) 

with 0t = and (69) we have
2 4cosh 12 2

2cosh

Ha Ha
k
c Ha Re

p
-

= -
æ ö÷ç ÷ç ÷çè ø

.               (74)

Where we denote the critical wave number as kc.

Conclusion
In this work, we study Hartmann flow with a transverse strong 

magnetic field through wave perturbations. First, it is shown that in 
case of two dimensional flow perturbations do not provide unstable 
solution. In the second part we consider three dimentional flow in 
complex system and show that there is no solution for coresponding 
MHD equations. In the third section we obtain analytical solution 
between critical wave number kc and Hartmann number Ha. The 
litrature shows that MHD equation are solved only numerically and 
we have sovled the exact solution of Navier-Stokes equations by using 
quaternionic method.

The formula (74) gives the analitical dependance which is earlier 
was calculated numerically only. This formula is qualitatively correlates 
with the experimental observations and numerical simulations.

The approach which has used to obtain the solution can be used in 
other models with different kinds of equation systems. The quaternionic 
method also can be treated as the result of the article.
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