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Abstract
Objective: The prevalence of overweight and obesity is considered an important public issue in the United States 

and is increasing among both children and adults. There is evidence of aberrations in the vitamin D-endocrine system 
in obese subjects. Therefore, we will review the role of vitamin D in the adipose tissue.

Methods: Review Medline database literature and discuss the relationship between vitamin D status and obesity.

Results: It has been noted that vitamin D deficiency and obesity share many of the same risk factors, including 
both indirect – environmental factors (nutritional, racial, geographic, seasonal, and exposure to air pollution) -- -- and 
direct - genetic risk factors (vitamin D receptor, polycystic ovary syndrome, cytochrome P450, locus 20q13, vitamin 
D-binding protein gene polymorphisms, and aP2 gene). Vitamin D is fat-soluble and stored in adipose tissue. The
serum concentration of 25-hydroxyvitamin D3(25OHD3) is inversely correlated with body weight. The vitamin D receptor
(VDR) is present in adipose tissue and may contribute to the action of vitamin D and its analogs in adipocytes.
1,25-dihydroxy-vitamin D3 (1,25OHD3) exerts its actions mainly via its high affinity receptor VDR through a complex
network of genomic (transcriptional and post-transcriptional) and non-genomic mechanisms.

Conclusion: Vitamin D plays a role in the regulation of adipose tissue. Obese individuals may need higher 
doses of vitamin D supplementation than do lean individuals to achieve optimal levels of 25OHD3.Calcitriol modulates 
adipokine expression and inhibits anti-inflammatory cytokine expression. Calcitriol definitely has a role in the human 
adipose tissue because of its active form of vitamin D3 metabolite, their receptors presented in adipocytes, and itse 
suppression of PTH levels.
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Introduction
The prevalence of overweight and obesity is considered an 

important public issue in the United States and is increasing among 
both children and adults [1]. Adipose tissue plays a dynamic role in the 
regulated uptake, storage, and release of lipids. Excessive body weight 
is a risk factor for cardiovascular disease, type 2 diabetes mellitus 
(DM), metabolic bone disorders, and especially abnormal vitamin D 
metabolism. There is evidence of aberrationsin the vitamin D-endocrine 
system in obese subjects [2], such as increases inserum parathyroid 
hormone (PTH), urinary cyclic adenosine 3,5’-monophosphate 
(cAMP), renal tubular reabsorption of calcium, and circulating 
1α,25-hydroxyvitamin D3(1,25OHD3), as well as decrease in serum 
25-hydroxyvitamin D3 (25OHD3) levels. In overweight women, bone
metabolism is disturbed, and certain markers of bone formation
(osteocalcin, carboxyterminal propeptide of type I procollagen, and
alkaline phosphatase in the blood) are increased [3]. Weight reduction
is accompanied by the regression of secondary hyperparathyroidism

andan increase in the level of 25OHD3 [4-5]. In obese subjects, 
cholecalciferol supplementation (3,332 IU/day) does not affect weight 
loss but significantly improves several cardiovascular risk markers, such 
as decreases in the levels of PTH, triglycerides, tumor necrosis factor-
alpha (TNF-α), and LDL (low density lipoprotein) cholesterol, as well 
as increases in the levels of 25OHD3 and 1,25OHD3 [6]. Supplement of 
~2,000 IU/day of oral vitamin D for 16 weeks is effective at improving 
vascular endothelial function in overweight African-American Adults 
[7]. In children, serum adiponectin levels have been reported to 
increase in patients with vitamin D-deficiency rickets, and decreased 
significantly with vitamin D treatment [8]; Adiponectin is synthesized 
and secreted exclusively by the adipose tissue. Therefore, we will review 
the role of vitamin D in the adipose tissue.

Relationship between Vitamin D & Obesity
The relationship between vitamin D and obesity has been suggested 

by several lines of evidence, both direct and indirect.

Indirect factors

Nutritional factors: Calcium or dairy products have been 
reported to be associated with reduced fat mass or weight [9-10]. In 
the population of northern Norway, there a significant and positive 
association was found between calcium intake and body mass index 
(BMI) in men, and negative and significant associations were found 
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between the intake of vitamin D and BMI in both sexes [11]. Hill et al. 
[12] found a positive, significant relationship between calcium intake 
and serum 25OHD3 levels in postmenopausal Irish women. In the 
young overweight/obese women, vitamin D status was reported to be 
modified by two hypocaloric diets. Consumption of a cereal diet that 
was enriched with vitamin D was associated with a greater weight loss 
than were green and vegetable diets and led to higher serum 25OHD3 
levels [13]. Beydoun et al. [14] reported that a higher circulating 
25OHD3 level was associated with a better quality diet, lower percent 
body fat, and lower number of metabolic disturbances.

Racial factors: Darker skin pigmentation is inversely associated 
with 25OHD3 levels [15]. Serum 25OHD3 levels were significantly 
lower in Pacific Islanders and Maoris compared to Europeans, after 
making adjustments for age, sex, and time of the year [16]. Obese 
African-Americans are at an especially high risk of vitamin D deficiency 
compared to Caucasian-Americans [17-18]. In American children, 
vitamin D-deficiency is associated with higher visceral adipose tissue 
in Caucasians and greater subcutaneous adipose tissue in African-
Americans [19].

Seasonal factors: A higher level of ultraviolet-B (UVB) radiation 
exposure is required to maintain vitamin D sufficiency in the winter 
when compared to the summer. In a study of healthy African-American 
and Caucasian-America women, Arunabh et al. [18] demonstrated 
that seasonal variations in thelevels of 25OHD3 were associated with 
the percentage of total body fat mass. There were significant variations 
in 25OHD3 levels across three seasonal intervals. The highest levels of 
serum 25OHD3 observed from June-September and the lowest levels 
from February-May in both ethnic groups. The changes in 25OHD3 
levels across seasons were more pronounced in Caucasian-American 
women compared to African-American women. Similarly, during the 
summer, 7.1% of African-American women in the lowest quartile of 
fat mass (QFM) reached 80 nmol/liter, and only 3.7% of those in the 
highest QFM achieved this level; however, 73% of Caucasian-American 
women in the lowest QFM reached 80 nmol/liter, and only 30.7% of 
those in the highest QFM achieved this level. In other reports, there 
were also marked seasonal variations in absolute serum 25OHD3 levels 
and the prevalence of vitamin D deficiency in subjects with mild to 
extreme obesity [20-21]. Similarly, measurements of BMI and waist 
circumference were higher in the winter than during the summer 
[22]. In Poland, boys born in October-April were taller (by 2-3 cm), 
heavier (by 2-3 kg), and fatter than boys born in May-September [23]; 
November-May is the winter period in Poland. In another study, 
people in the highest QFM had lower peak serum 25OHD3 levels and 
smaller amounts of seasonal variation in serum 25OHD3 levels than did 
those in the lowest QFM [24]. 

Geographical factors: There is a strong correlation between UVB 
radiation exposure and the latitude gradients of disease incidence. It 
has been observed that every 10 degrees distance from the equator, 
correspondence to progressive decrease in UVB radiation exposure 
[25]. Solar UVB is the primary source of vitamin D for most people. 
Using 2 previously published data sets [26-27], Ashraf et al. [28] 
demonstrated that the geographical factor varied with the change 
in 25OHD3 levels in obese subjects; the prevalences of vitamin D 
deficiency among African-American children and adolescents were 
shown to be 57% and 48.7% in Pennsylvania (latitude 40oN) and 
Wisconsin (latitude 43oN), respectively.

In response to UV irradiation, the level of unscheduled DNA 
synthesis is significantly lower in adipocytes as compared to murine 
3T3-T proadipocyte cells (stem cells) [29]. Chronic UV irradiation 
exposure has been reported to cause a disappearance of adipocytes [30].

Air pollution exposure factors: Atmospheric pollution has been 
suggested to be a cause of reduced vitamin D synthesis in the skin. In 
Australia, Kinley et al. [31] demonstrated a large difference in vitamin 
D synthesis between populations in an urban canyon (urbanized 
environment with tall buildings) and those in a typical suburban area 
(~2.5 km away from urban areas). Increased atmospheric pollution 
may be related to haze from industrial and vehicle sources and lead to 
decrease in absorption of UVB photons, thereby reducing cutaneous 
vitamin D synthesis [32-33]. Agarwal et al. [34] reported that higher 
levels of atmospheric pollution were correlated to lower amounts of 
UVB light reaching ground level. They also showed that children living 
in areas of high atmospheric pollution were at risk of developing the 
vitamin D deficiency rickets. In a study of Belgian postmenopausal 
women who participated in outdoor activities during the summer, 
urban inhabitants were reported to have an increased prevalence of 
vitamin D deficiency compared to rural inhabitants [35]. In a cross-
sectional study, Hosseinpanah et al. [36] demonstrated that living in 
a polluted area plays a significant and independent role in vitamin 
D deficiency. Air pollution has long been known as a major adverse 
risk factor with serious consequences on human health. Automobile 
traffic around the home has been identified as a major risk factor for 
the development of obesity in children [37]. Significant differences 
in adult obesity prevalence exist between rural and urban settings in 
the Samoan Archipelago; mean BMI increased from rural to urban 
Samoan [38]. In another study conducted in China population at 
Qindao, urban men have more risk factors and higher prevalence of 
the metabolic syndrome than rural men [39].

Direct effects

Genetic factors: Genetic studies provide an excellent opportunity 
to link molecular variations with epidemiological data. DNA sequences 
variations such as polymorphisms exert modest and subtle biological 
effects. Receptors play a crucial role in the regulation of cellular function, 
and small changes in their structure can influence intracellular signal 
transduction pathways.

Calcitriol binds to a nuclear receptor, the vitamin D receptor (VDR), 
which is associated with specific recognition sequences called vitamin 
D-responsive elements (VDRE). The commonly occurring linked 
single nucleotide genetic markers (polymorphisms) at the 3end of the 
VDR gene are the restriction fragment length polymorphism (RFLPs) 
of BsmI, ApaI, and Taq I and the exon 2 splice site Fok polymorphism. 
In the absence of VDR, animals display low fat mass, resistance to 
high-fat-induced fat accumulation, and reduced plasma lipid levels 
[40]. VDR knockout mice (VDRKO) also displayed atrophy of adipose 
tissue surrounding the prostate and mammary glands [41-42]. VDR 
polymorphisms were reported to play a role in adiposity phenotypes 
[43]. In Hispanic women, the VDRFokIff genotype is reported to be 
associated with an increase in the waist-to-hip ratio (WHR), which is 
indicative of the central deposition of body fat and is more specifically 
associated with an adverse metabolic profile [44]. In subjects with 
early-onset type 2 DM, the presence of the TT genotype of the Taq I 
single nucleotide polymorphism (SNP) or of the bb genotype of the 
BsmISNP account for a difference of approximately 9 kg of body weight 
(or 4 kg/m2 BMI) and an approximate ~30% increase in the prevalence 
of obesity [45]. Individuals with short poly A repeat (ss) and/or 
absence of the linked BsmI restriction site on both alleles (BB) exhibit 
significantly higher body weight and fat mass [46]. VDR and estrogen 
receptor polymorphisms were demonstrated to be associated with total 
fat mass in young Chinese men [47]. Moreover, human body weight 
and BMI have been shown to be associated with a BsmI restriction 
site polymorphism in the nuclear VDR gene [48]. The BsmI VDR 
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polymorphism seems to influence BMI because the BB carriers tend to 
have higher BMI and waist circumferences compared to the bb genotype, 
while the Fok I VDR polymorphism appears to affect insulin sensitivity 
and serum HDL (high density lipoprotein) cholesterol levels [49]. In 
another study, however, the BsmI polymorphism in the VDR gene did 
not seem to predispose the subjects to obesity or insulin resistance, but 
the BB genotype was connected to an unfavorable lipid profile [50]. 
Polycystic ovary syndrome (PCOS) is one of the most common 
endocrinopathies, affecting reproductive-age women, and 
characterized by hyperandrogenism, chronic an ovulation, and 
abnormal development of ovarian follicles. Central obesity and 
insulin resistance are common features found in PCOS patients. In 
addition, abnormalities in the PTH-vitamin D axis were reported in 
the PCOS patients. Low 25OHD concentrations are correlated with 
insulin resistance, metabolic risk factors, and obesity in women with 
PCOS [51-54]. Serum PTH levels are also higher in PCOS patients 
than ovulatory women without hyperandrogenemia [54-55]. Vitamin 
D treatment improved glucose metabolism and menstrual frequency 
in PCOS women [56-58]. Moreover, precocious pubarche (PP) girls 
may have higher risk of developing PCOS at later ages; the ApaI of 
the VDR polymorphism was associated with these PP patients [59]. 
The Apa I genotype “Aa” appeared to be a marker of decreased PCOS 
susceptibility, whereas the “aa” genotype was associated with an 
increased risk for PCOS [60]. VDR ApaI variants are also associated 
with testosterone levels in PCOS women [61]. These findings suggested 
a role of vitamin D in the PCOS patients.

The cytochrome P450 (CYP) is responsible for the oxidation, 
peroxidation, and/or reduction of vitamins, steroids, and xenobiotics, 
as well as the metabolism of drugs. The CYP27B1 (25-hydroxy-vitamin 
D3-1α-hydroxylase) enzyme catalyzes the 1α-hydroxylation of the 
25OHD3 to 1,25OHD3, the most active form of vitamin D3 metabolite. 
1α-hydroxylase has been reported to be expressed in adipose tissue and 
is functional in cultured adipocytes [62]. Interestingly, mice lacking 
CYP27B1 display a lean phenotype that is similar to hypoleptinemia 
and hyperphagia [63]. Leptin is an obesity-related gene product that 
is secreted by adipocytes. Congenital leptin deficiency is associated 
with severe early-onset obesity in humans [64]. Leptin administration 
to leptin-deficient obese mice suppressed the mRNA expression 
and activity of renal CYP27B1 [65], and inhibited renal 1,25OHD3, 
synthesis [66].

A genomic DNA clone for 1,25OHD3 24-hydroxylase has been 
isolated from a human chromosome 20 library [67]. In a genome-
wide association study, a variant at the20q13locus was identified as a 
risk factor for vitamin D insufficiency [68]. Heterozygous inactivating 
mutations in the GNAS1 exons (20q13.3) were observed in patients 
with pseudo-hypoparathyroidism (pHPT) [69]. pHPT is characterized 
by end-organ resistance to PTH and pHPT patients present with a 
round face, short stature, brachydactyly, heterotopic ossification, and 
obesity. In the Québec family study, a genome-wide linkage analysis 
indicated that 20q13.2can influence plasma levels of adiponectin 
and C-reactive protein, which are related to the obesity phenotype 
[70-71]. In another study, a genome scan indicated that one or more 
genes affecting obesity are located in 20q13 [72]. Single nucleotide 
polymorphisms in the protein tyrosine phosphatase 1β (PTPN1) gene 
have been reported to be associated with essential hypertension and 
obesity in two populations of Japanese and Chinese descents [73]. 
PTPN1 has been shown to dephosphorylate a kinase that is essential in 
leptin signaling [74-75]. This gene is also located on same chromosome 
as 20q13. On a high-fat diet, PTPN1-deficient mice were resistant to 
weight gain, whereas their wild-type littermates became obese [76]. A 

variation in the 3’unstranslated region (UTR) of PTPN1 was reported 
to be associated with insulin resistance in obese individuals [77]. The 
human promyeloid cell line HL-60 differentiates to either monocytes 
or granulocytes when treated with calcitriol, which induces tyrosine 
phosphorylation [78]. In this cell line, calcitriolwas also reported to 
increase the protein tyrosine phosphatase activity [79].

The vitamin D-binding protein (DBP) gene contains conserved 
nucleotide sequences that respond to adipocyte and mitotic signals [80]. 
DBP is essential for vitamin D cellular endocytosis and metabolism [81]; 
thus, variants of the DBP may affect the amount of active vitamin D in 
adipocytes and, subsequently, obesity. This prepeptide was reported to 
be up-regulated in obese rats [82]. The binding and bioavailability of 
vitamin D metabolites were also altered by mono- and polyunsaturated 
fatty acids but not by saturated fatty acids [83]. An association has been 
reported between DBP gene polymorphisms and variations in obesity-
related traits in Caucasian nuclear families, especially in female [84].

In obese subjects, adipocyte lipid binding protein (ALBP, the 
human homologues of the mouse protein aP2) and RNA expression 
was higher in subcutaneous than with omental adipose tissue [85]. In 
the lean subjects, however, the expression of ALBP protein was not 
significantly different between the adipose tissue depots. Adipocytes 
from aP2-/- mice exhibit diminished lipolysis [86-87] and these mice 
fail to develop insulin resistance normally associated with the ensuing 
obesity after feeding with high fat diet [88]. In 3T3-L1 adipocytes, 
calcitriol is reported to decrease adipose-specific (aP2) gene expression 
[89].

The relationship between allelic variation in vitamin D metabolism 
and obesity are summarized in Table 1.

Role of Vitamin D in Obesity
Vitamin D and the adipocyte

Vitamin D is fat-soluble and readily stored in adipose tissue. In 
1971, Lumb et al. [90] suggested that vitamin D is sequestered after 
absorption, stored in tissues such as fat and muscle, and then released 
slowly into the circulatory system where it becomes biologically 
available. This fate of vitamin D was demonstrated by injecting radio-
labeled vitamin D3 into individuals and observing the highest levels of 
biological activity and radioactivity in the fat tissue [91]. Prolonged 
UV light irradiation of normal rats indicated that adipose tissue, 
muscle and plasma could hold very large amounts of D3 [92]. In animal 
models, the adipose tissue is the major storage site for vitamin D3 and 
is a source available for conversion to other metabolites during periods 
of deprivation [93]. In another study, decreased 25OHD3 levels were 
observed during obesity and may have been secondary to alterations 
in tissue distribution resulting from increases in adipose mass [94]. 
The percentage body fat content is independently inversely related 
to the serum 25OHD3 levels in healthy women, regardless of dietary 
vitamin D intake, season, age, and race [18]. The association between 
25OHD3 concentrations and adiposity was stronger for visceral than 
for subcutaneous abdominal adiposity [95]. This relationship was 
present even among healthy, lean individuals who might otherwise 
not to be considered at risk for vitamin D deficiency. Vitamin 25OHD3 
concentrations in subcutaneous fat tissue and serum were inversely 
and similarly correlated with body weight [96]. The incremental 
increase in blood 25OHD3 concentrations was 57% less in the obese 
than in the non-obese subjects after exposure to whole-body UVB 
radiation; however, the percentages for conversions to previtamin 
D3 and vitamin D3 were similar in both groups [97]. Therefore, obese 
individuals need a higher than normal intake of vitamin D to attain 
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optimal 25OHD3 levels compared to lean individuals. Overweight/
obese women, however, are at a higher risk of vitamin D deficiency, 
largely due to excessive adiposity rather than inadequate in take [98]. 
Vitamin D insufficiency has also been reported to be associated with 
increased fat infiltration into the muscle in healthy women [99].

Vitamin D deficiency, secondary hyperparathyroidism, and 
subsequent bone loss are common in patients who have undergone 
a bariatric surgical procedure for morbid obesity and are due to a 
combination of baseline deficiency and postoperative malabsorption 
despite excess weight loss and oral vitamin D supplement [100-
103]. However, some studies suggested that high dose of vitamin D 
supplement, either 5,000 IU/day or 50,000 IU of vitamin D weekly, may 
correct vitamin D depletion, attenuate cortical bone loss, and improve 
resolution of hypertension in most patients [104-106].

Role of vitamin D

Obesity has been identified as an important risk factor for heart 
disease and stroke. The intracellular calcium concentration ([Ca2+]i) 

plays a key role in metabolic disorders associated with obesity [107]. 
Increasing [Ca2+]i via stimulation of either receptor-mediated or 
voltage-dependent calcium channels stimulates both the expression 
and activity of fatty acid synthase (FAS), a key enzyme in de novo 
lipogenesis and inhibits basal and agonist-stimulated lipolysis in both 
human and murine adipocytes [108-111]. In animal models and in 
cultures of human adipocytes, calcitriol causes an acute increase in the 
[Ca2+]i via activation of calpain and caspase-12 [111-112]. The increased 
[Ca2+]i in the adipocytes leads to an activation of lipogenesis and an 
inhibition of lipolysis via a rapid non-genomic effect. Decreasing 
the dietary calcium intake could increase body weight by inhibiting 
lipolysis and increasing lipogenesis through an increase in serum 
1,25OHD3 [113]. Calcitriol exerts an inhibitory effect on basal as well 
as isoproterenol and fatty acid-stimulated uncoupling protein (UCP) 2 
expression via a genomic effect [113-114].The membrane VDR agonist 
and antagonist fail to exert their actions to either mimic or prevent the 
1,25OHD3 inhibition of UCP2 expression, whereas nuclear VDRKO 
by antisense oligo-deoxynucleotide prevented the inhibitory effect of 
1,25OHD3. UCP 2 expression is correlated with the basal metabolic rate 

Linked to 
1. VDR:


       Absence VDR                                  Low fat mass, resistance to fat-induced obesity and reduced plasma lipid levels
Atrophy of the adipose tissue surrounding the prostate and mammary glands

       VDR Polymorphism                       Total  fat mass in young Chinese men

•	 TaqI
TT allele                                        Increase prevalence of obesity in type 2 DM 

•	 FokIEffect on insulin sensitivity and serum HDL-cholesterol
ff genotype                                    Increase in waist-to-hip ratio

Adverse metabolic profile
bb genotype Increased prevalence of obesity in type 2 DM
BsmI                                             Human body weight and BMI

No predisposition to obesity and insulin resistance
BB allele                                      Higher BMI and waist circumference relative to bb allele

Unfavorable lipid profile
short poly A- repeat (ss)               Higher body weight and fat mass

2. Polycystic Ovary Syndrome: Central obesity and insulin resistance  (PCOS)
+ Low 25OHD concentrations        Correlated with insulin resistance, metabolic risk factors, and obesity
+ Serum PTH levels                        Higher in PCOS patients than ovulatory women without hyperandrogenemia
+ Vitamin D treatment                    Improved glucose metabolism and menstrual frequency
+ ApaI genotype “Aa” of VDR      Appeared to be a marker of decreased PCOS susceptibility.
+ApaI genotype“aa” of VDR       Associated with an increased risk for PCOS

+ VDR ApaI variants Associated with testosterone levels in PCOS women. 
3. Cytochrome P450:

•	 CYP27B1
Converts 25OHD3 to 1,25OHD3   Express in adipose tissue and function in adipocytes
Lacking CYP27B1                          Lean phenotype with hypoleptinemiaandhyperphagia

4. Chromosome 20:Clone for 1,25OHD3 24-hydroxylase
Variant at 20.13                                 Risk for vitamin D deficiency

Obesity
PTPN1 Essential hypertension, obesity (Japaneseand Chinese)

 Mutation at 20q13.3 Pseudohypoparathyroidismand obesity 
Variant at 20q13.2                            Influence plasma levels of adiponectinand C-protein

5. Vitamin D-binding protein (DBP):
DBP gene                                           Contains conserved nucleotide sequences that respond to adipocyticand mitotic signals

 For vitamin D cellular endocytosis and metabolism
DBP gene variant                               Obesity-related trait in Caucasian nuclear families

VDR, vitamin D receptor; DM, diabetes mellitus; HDL, high density lipoprotein; 25OHD3, 25-hydroxyvitamin D3; 1,25OHD3, 1,25-dihydroxyvitamin D3; PTPN1, protein 
tyrosine phosphatase 1β

Table 1:  The relationship between allelic variations in vitamin D and obesity.



Citation: Lương KVQ, Nguyễn LTH (2012) Vitamin D and Obesity. Med chem 2: 011-019. doi:10.4172/2161-0444.1000107

Med chem
ISSN: 2161-0444 Med chem, an open access journal

Volume 2(1): 011-019 (2012) - 015 

in obese women [115]. Over expressing UCP2 in 3T3-L1 preadipocyte 
cells induced marked reductions in mitochondrial potential and ATP 
production, increases in the expression of caspases, and decreases 
in the Bcl-2/Bax expression ratio [116]. Bcl-2 and Bax are apoptotic 
proteins; the ratio of protective Bcl-2 to apoptotic Bax is widely used 
to determine the susceptibility to apoptosis through the regulation of 
mitochondrial function following an apoptotic stimulus. The activation 
of caspases then induces apoptosis. Physiological doses of 1,25OHD3 
(0.1-10 nM) restored the mitochondrial potential and protected 
against UCP2 over expression-induced apoptosis, whereas high dose 
of 1,25OHD3 (100nM) stimulated caspase-1 and caspase-3 expression 
and inhibited the Bcl-2/Bax ratio, which was a complete reversal 
of the effect of lower doses of 1,25OHD3 on apoptosis [117]. UCP1, 
which is a highly specific marker for brown adipocytes and mediates 
the dissociation of cellular respiration from energy production, was 
elevated more than 25-fold in VDRKO white adipocyte tissue. This 
elevated UCP1 coincided with a resistance to high-fat diet-induced 
weigh gain in VDRKO mice [63]. This study identified a novel role 
of VDR on lipid accumulation and gene expression in adipose tissue. 
Brown adipose tissue (BAT) is thought to have a protective role against 
obesity because the genetic ablation of BAT leads to obesity in mice 
[118]. Classically, adult humans have been considered not to possess 
active BAT. Zingaretti et al. [119], however, demonstrated that human 
adults indeed possess BAT with the presence of UCP1. Calcitriol also 
reported directly to down regulate UCP1 and UCP3 expression in BAT 
[120]. The production of reactive oxygen species (ROS) has been shown 
to be increased in obesity [121]. Calcitriol has been demonstrated to 
stimulate [Ca2+]i, inhibit UCP2 expression, stimulate reactive oxygen 
species (ROS) production and cell proliferation in adipocytes [122]. 
In porcine mesenchymal stem cells (MSC), calcitriol stimulates 
adipocytic differentiation and increases the concentrations of mRNA 
encoding peroxisome proliferator-activated receptor gamma (PPARɤ), 
lipoprotein lipase, and adipocyte-binding protein 2 [123]. In the MSC 
of the senescence-accelerated mice (SAM-P/6), however, calcitriol 
inhibits bone marrow adipogenesis by decreasing the expression of 
PPARɤ2 and thus contributes to their differentiation into osteoblasts 
to form new bone [124]. Calcitriol and its analogs were reported to 
inhibit the adipogenesis and PPARɤ2 gene transcription in the murine 
3T3-L1preadipocyte cell line [125-126]. This cell line offers an ideal 
model system to understand adipocyte development. In rat hepatoma 
(H4IIE) cell lines, nuclear VDR represses the transcriptional activity 
of PPARα (but not PPARɤ) in a 1,25OHD3-dependent manner [127]. 
PPARα potentiates fatty acid catabolism in the liver and is activated by 
the lipid-lowering fibrates, whereas PPARɤ is essential for adipocyte 
differentiation. In mice, calcitriol was also demonstrated to inhibit bone 
marrow adipogenesis. Lee et al. [128] suggested that calcitriol-mediated 
induction of the endoplasmic reticulum (ER) protein insulin-induced 
gene 2 (Insig-2) in 3T3-L1 adipocytes might lead to the inhibition of 
adipogenesis by preventing a transcription factor, sterol regulatory 
element binding protein 1c (SREBP-1C), from reaching the nucleus. 
Insig-1 and Insig-2 have been shown to restrict lipogenesis in mature 
adipocytes and block differentiation of preadipocytes [129]. Recently, 
Blumberg et al. [130] have further defined the molecular mechanism 
by which unligandedVDR and calcitriol-ligandedVDR regulate 
adipogenesis. In the presence of calcitriol, VDR blocks adipogenesis 
by down-regulating both CCAAT/enhancer-binding Protein b (C/
EBPb) mRNA expression and C/EBPb nuclear protein levels at a 
critical stage of differentiation. In the absence of calcitriol, unliganded 
VDR appears necessary for lipid accumulation because knockdown of 
VDR expression using siRNA both delays and prevents this process. 
Kawada et al. [131] proposed that the active form of vitamin D acted 

as a suppressor on adipocyte development via ligand-dependent 
transcriptional regulators.

The UVB has been reported to decrease all PPAR subsets (α, 
β, and γ) at the mRNA level [132]. The UVA inhibits adipogenic 
differentiation of human adipose tissue-derived mesenchymal cells and 
its action mechanisms [133]. The mRNA levels of PPAR γ target genes 
[lipoprotein lipase, CD36, adipocyte protein (aP2), and C/EBPα] were 
reduced by the UVA. Application of calcitriolon the dorsal skin prior 
to UV irradiation dramatically prevented both the disappearance of 
adipocytes and the accumulation of extracellular matrix components 
in the lower dermis [134].

Plasminogen activator inhibitor-1 (PAI-1) is known as a risk marker 
for coronary artery disease. High PAI-1 activity is a frequent finding 
in obesity. In obese subjects, subcutaneous adipose tissue secreted 
greater amounts of PAI-1 and had a higher PAI-1 gene expression than 
visceral adipose tissue [135]. In human coronary artery smooth muscle 
cells (SMC), calcitriol and its analogs down regulated the expression of 
PAI-1 mRNA and protein in a dose-dependent manner [136].

Conclusion
 In humans, there are limited numbers of studies on the effect 

of vitamin D on obesity [6, 137-139]. Their results, however, 
indicated that there was no effect on weight change and that there 
was slight improvement in cardiovascular risks with cholecalciferol. 
Obese individuals may need higher than usual doses of vitamin 
D3 supplementation to attain optimal 25OHD3 compared to lean 
individuals. Cholecalciferol supplement, however, has no effect on 
cytokines and markers of inflammation in obese subjects [140]. 
Calcitriol, inversely, modulates adipokine expression and inhibits anti-
inflammatory cytokine expression [141]. Calcitriol definitely has a role 
in the human adipose tissue because of its active form of vitamin D3 
metabolite, their receptors presented in adipocytes and its suppression 
of PTH levels. PTH excess observed in elderly subjects with both 
primary and secondary hyperparathyroidism may promote weight 
gain [142]. 
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