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Nomenclature
t: Time (s)

u: Vehicle speed (ms-1) 

a(ρ,u): Speed adaptation coefficient

µ: Average acceleration (ms-2)

ρ(x,t): Density of traffic in a continuum (vehicles/m)

τ: Relaxation time (s)

d: Vehicle length (m)

q=ρu: Flow rate (vehicles/hour)

x: Displacement (m)

P: Traffic pressure (N/m2)

A(U): Jacobian matrix

F: Free traffic flow

C: Congested traffic

S: Synchronised flow

J: Wide moving jam

F→S: Phase transition from free flow phase to synchronized flow 
phase

S→J: Phase transition from synchronized flow phase to wide 
moving jam phase

( , )   x t
t

ρ∂
∂

: Rate of change of traffic density with time

( , )q x t
x

∂
∂

: Rate of change of traffic flow with space

Introduction
Transport forms a key component of creating a competitive business 

environment as well as a means through which various economic, social 
and environmental objectives of a nation can be achieved. Congestion 
of vehicular traffic experienced within urban areas has adverse effects 
on people’s quality of life due to delays, accidents and environmental 
pollution. An efficient transport system that minimizes travel times 
as well as externalities should be put into consideration. One way of 
eliminating the problem of traffic congestion is to increase the capacity 
of existing roadways by developing transport corridors, surface streets 
and by-passes. However, this is not always practical due to limited 
financial resources, space, environmental effects and local politics. 

For effective traffic management and control, proper understanding 
of traffic congestion is needed. These are the insights into what causes 
congestion, what determines the time and location of traffic breakdown 
and how the congestion propagates through the road network. In 
addition, spatiotemporal behavior of empirical traffic congested 
patterns should also be studied closely. This is because traffic congestion 
is observed to take place in space and time in form of spatiotemporal 
congested traffic patterns that propagate within roadways. For this 
reason, huge numbers of publications that are devoted to empirical 
studies of traffic congestion and associated traffic flow theories have 
been done. 

The earliest well-articulated theories of traffic flow is known as 
the kinematic wave theory, LWR traffic flow congestion theory, and 
classical flow congestion by James Lighthill and Gerald Whitham 
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Abstract
In this study, we outline the Kerner’s 3-phase traffic flow theory, which states that traffic flow occurs in three 

phases and these are free flow, synchronized flow and wide moving jam phases.

A macroscopic traffic flow model that is factoring driver aggressiveness is developed and its features discussed. 

By construction of the solution to the Riemann problem, the model is written in conservative form and solved 
numerically. Using the Godunov numerical method we go ahead to simulate traffic flow on a multilane road with a 
lane-drop bottleneck.

The model is compared with the Aw-Rascle model and features of the model are shown to reproduce the features 
of a three phase traffic flow which the Aw-Rascle model cannot reproduce. It is also shown that the model respects 
aspects of traffic by responding to frontal stimuli only and it does not produce negative travel.
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Where ( )'( , ) 
(1 )

a u C pρ ρ ρ ρ
ρ ρ ρ

= =
−

		                 (1) 

Kerner [7] in his work describes traffic in several major cities in the 
world in three phases; free flow, wide moving jam and synchronized 
flow. In our Kenyan roads the three phases exist and knowledge on 
how the phase transition takes place can be a great contribution in 
traffic management. The speed of the vehicles in the synchronized and 
wide moving jam is influenced by the aggression of the driver. The 
same driver aggression influences the phase transition from free to 
congested region.

In this study, we develop a macroscopic traffic flow model 
motivated by Kerner [7] traffic flow theory with considerations of 
driver aggressiveness as experienced on Kenyan roads such Thika 
superhighway.

We shall formulate the driver aggression as a function of velocity 
and develop a model to investigate how the driver aggression can 
influence the phase transitions from Free Flow to Synchronized Flow 
and then to Wide Moving Jam. The model will help us deduce the causes 
of congestion in Kenyan roads in order to design comfortable and safe 
roads, to solve road congestion problems and to design adequate traffic 
management measures.

Driver aggressiveness

A driving behavior is aggressive if it is deliberate, likely to increase 
the risk of collision and is motivated by impatience, annoyance, hostility 
and/or an attempt to save time. These driving actions that markedly 
exceed the norms of safe driving behavior, directly affect other road 
users by placing them in unnecessary danger.

All these behaviors are exacerbated by the stress and time pressures 
of modern life. Increasingly crowded and congested roads also lead to 
feelings of frustration and are responsible for cases of aggressive driving 
and lack of respect for other drivers such as illegal use of hard shoulder, 
changing lanes without indicating or preventing other vehicles from 
entering a traffic lane. 

In our study we look at the driver aggressiveness as a result of 
lane-drop bottleneck from 3 lanes to 2 lanes. In normal circumstances 
drivers absolves themselves to the two proceeding lanes far upstream 
of the bottleneck. This does not cause much traffic jam in case of a 
lane-drop bottleneck. An aggressive driver on the other hand will take 
advantage of the free third lane and drive all the way to merge at the 
lane-drop location. This behavior forces other drivers to emergency 
braking and as a result traffic jam forms from the lane-drop point and 
grows upstream of the highway.

Governing equations

The equations governing flow in traffic flow are based on the 
momentum and conservation of mass. The mathematical modeling of 
traffic flow often rests on a fluid flow analogy, treating the traffic stream 
as a two dimensional compressible fluid from which it can be deduced 
that traffic flow is conserved. The number of vehicles entering a certain 
region equals the number leaving the same region. Gas kinetic traffic 
flow models were first proposed by Prigogine [8] and are based upon 
the analogy between gas flows and traffic flows. Where in the former 
case the dynamics are governed by interacting gas particles the latter 
deals with interacting vehicles. In order to realistically describe traffic 
flows the specification of the vehicle interactions must obviously differ 
from that of gas particles, the main difference being that drivers do not 
behave according to physical laws.

[1]. The theory combines three elements: the fundamental identity of 
traffic flow theory, that flow is the product of density and velocity, the 
equation of continuity, which is the conservation of mass for a fluid and 
an assumed technological relationship between velocity and density. 

This being a first order approximate model of traffic flow dynamics 
has a number of serious deficiencies; firstly, the model predicts 
infinite deceleration when a vehicle crosses a shock. This reveals that 
acceleration or deceleration of a vehicle stream is proportional to 
traffic concentration and concentration gradient. Secondly, the model 
assumes that the equilibrium speed-concentration also holds for non-
Equilibrium traffic. In reality, traffic flow is hardly in equilibrium and 
its dynamics is a result of the retarded response of drivers to various 
frontal stimuli. Thirdly, the model lacks a mechanism for traffic to 
accelerate or decelerate at a finite speed when the concentration 
gradient is large.

Due to this deficiencies, Payne [2] derived an equation of motion 
from car-following theory, response=sensitivity × stimulus. The model 
is called PW-models.

The Payne’s model together with its computer implementation 
aroused considerable interest in higher-order continuum traffic flow 
models. However, the application of this model, reported mixed results. 
Daganzo [3], points out that most of the problems were attributed to 
the fundamental flaw that the model produces a ‘wrong way travel’ that 
is negative travel speed.

Daganzo [3] pointed out that information in the PW model can 
travel faster than vehicles. There was an enhanced continuum traffic 
flow theory that removes certain deficiencies of the LWR theory without 
introducing new flaws. In deriving the new theory Zhang neglected 
higher order terms. This raised concern by Daganzo [3] as to whether 
one can neglect higher order terms when the concentration on the road 
is rapidly changing, as occurs near a shock path. However he showed 
that these higher order terms can be neglected if the concentration 
function ρ(x,t) is well behaved and temporal spatial scales are properly 
treated.

Daganzo [3] argued that second order models violate the principle 
that a car is anisotropic particle and responds to frontal stimuli. This 
motivated Rascle [4] to develop a model with which would rectify the 
above inconsistencies.

The Aw-Rascle model respects all the natural requirements (frontal 
stimuli) and the inconsistencies of ‘wrong way travel’ of second order 
models disappear. 

Klar et al. [5] derived a macroscopic traffic flow model from a 
macroscopic follow the leader models. The model obtained by Klar was 
of Aw-Rascle type. 

Kimathi et al. [6] developed a macroscopic traffic flow model based 
on Kerner [7] theory using Integral-Differential Equations of kinetic 
models. The model has the following equations.

∂tρ+∂x(ρu)=0

∂t(ρu)+ ∂x(ρu2) - a(ρ,u) ∂xu=ρR(ρ,u) 

R(ρ,u), is the relaxation term which describes the tendency of traffic 
flow to relax to an equilibrium velocity.

a(ρ,u), is the speed adaptation coefficient given by 

( ),
1

a u C ρρ
ρ

=
−
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Continuity equation

A continuity equation is a differential equation that describes the 
transport of some kind of conserved quantity, in particular-mass. The 
continuity equation expresses the idea that the total amount inside 
any region can only change by the amount that passes in or out of the 
region through the boundary. A conserved quantity cannot increase or 
decrease, it can only move from place to place.

In traffic flow, the number of vehicles is conserved hence we use 
the equation of continuity. In our study we are considering a multilane 
road with three lanes but one lane is varnishing at some point leaving 
two lanes proceeding.

( , ) ( , ) 0x t q x t
t x

ρ∂ ∂
+ =

∂ ∂
The equation expresses the relation between the rates of change of 

the density with respect to time and flow with respect to space.

Dynamic velocity equations

This equation is used to describe time varying and spatially varying 
average velocities u(x,t) such as those that occur in traffic jams or stop-
and go-jams, Helbing [9].

( )
2( , ) ( ) 0q x t u ua

t x x
ρ ρ∂ ∂ ∂

+ − =
∂ ∂ ∂

Where a(ρ) is the speed adaptation coefficient.

The equation by Kimathi et al. (2012) is as follows;
2( , ) ( )  

1
q x t u u

t x x
ρ ρβ

ρ
 ∂ ∂ ∂

+ =  ∂ ∂ − ∂ 
The variables, β is a measure of driver aggressiveness and in our 

study we shall approximate it as a function of velocity as follows:

β=Ae-u

Where A is a constant.

The range will be 0.3 < β < 1. As β tends to zero, the model produces 
the negative travel velocities. If β=0.3, the model becomes three phase 
traffic flow, if β=1, the model becomes Aw Rascle.

Substituting for β in the above equation into we get 
2

0 
1

uu u e uA
t x x
ρ ρ ρ

ρ

− ∂ ∂ ∂
+ − = ∂ ∂ − ∂ 

Features of the aggressive model

We can re-write the model equations in non-conservative form in 
terms of  and u as follows

( , ) ( , ) 0x t q x t
t x

ρ∂ ∂
+ =

∂ ∂
				                    (2)

0
(1 )

uu Ae uu
t x

ρ
ρ ρ

− ∂ ∂
+ − = ∂ − ∂ 

			                 (3)

Using the expression (1) while substituting C for A on (2) yields

( )'( ) 0uu uu e p
t x

ρ ρ−∂ ∂
+ − =

∂ ∂
			                   (4)

Comparing (4) with the Aw Rascle model, its non-conservative 
form is

( , ) ( , ) 0x t q x t
t x

ρ∂ ∂
+ =

∂ ∂
				                    (5)

( )'( ) 0u uu p
t x

ρ ρ∂ ∂
+ − =

∂ ∂

In order to express the equations in conservative form we multiply 

(2) with p′ to obtain ' ' 'up p p u
x t x

ρ ρρ ∂ ∂ ∂
= − −

∂ ∂ ∂
. Substituting the result 

in (4) and multiplying by eu, we get 

' ' 0u uu ue ue p p u
t x t x

ρ ρ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
. Grouping this expression gives

( ) ( ) 0u u
t xe p u e p∂ + + ∂ + = 			                  (6)

Multiplying (1.1) by (eu + p) we get

( ) ( ) 0u u
t xe p e p uρ ρ+ ∂ + + ∂ = 			                     (7)

Multiply (5) by ρ and add result to (6) to get the conservative form 
after regrouping the terms:

0u
t x
ρ ρ∂ ∂
+ =

∂ ∂
					                     (8)

( ) ( ) 0u u
t xe p u e pρ ρ   ∂ + + ∂ + =    		                   (9)

Where the conservative variables are ρ and y=ρeu + ρp

To obtain the conserved form of Aw-Rascle model, we multiply 
(4) by ρ and

( )( ) ( )( )( ) 0t xu p u u u pρ ρ ρ∂ + + ∂ + =  by (u+p(ρ)) and add up 

the two equations to get

0t x uρ ρ∂ + ∂ = 					                 (10)

( )( )( ) ( )( )( ) 0t xu p u u pρ ρ ρ ρ∂ + + ∂ + = 		                 (11)

Therefore the conservative variables of the model are ρ and y=ρu 
+ ρp(ρ)

The properties of the system are largely dictated by the Eigen values 
of the Jacobian matrix A(U), and are determined by the characteristic 
polynomial det(A - λI)=0.

Expressing the new model (2) and (4) in the form

( ) 0U UA U
t x

∂ ∂
+ =

∂ ∂
 				                   (12)

We have 1

2

u
U

u u
ρ   

= =   
  

 and 

( ) 0
0 '( )u

u
A U

u e p
ρ
ρ ρ−

 
= = − 

So that 
( )( ) 0

0 u

u

u e p

λ ρ

ρ ρ λ−

− 
= 

− −  

This yield ( ) ( )( )( )' 0uu u e pλ λ ρ ρ−− − + − =

Expanding the equation gives;

( )( ) ( )2 ' 2 '2 0u uu e p u ue pλ λ ρ ρ ρ ρ− −− − + − =

Applying the quadratic formula gives ( )'(2 ) '( )
2

u uu e p e pρ ρ ρ ρ
λ

− −− ±
=  

leading to 

( )1 '( )uu u e pλ ρ ρ−= −  and λ2=u
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These Eigen values are the characteristic speeds that govern the 
propagation of information in the traffic system. The largest Eigen value 
is equal to the flow velocity. This now means no traffic information 
travels faster than the traffic and therefore the anisotropic character of 
vehicular traffic flow is preserved.

The Eigen values are real and distinct hence the system of equations 
is purely hyperbolic.

Expressing the Aw-Rascle model in the form (12)

We have 1

2

  
u

U
u u

ρ   
= =   

  
and 

( )
0 '( )
u

A U
u p

ρ
ρ ρ

 
=  − 

The Eigen values become;

λ1(u)=u - ρp′ (ρ) and λ2=u

This shows that the system is purely hyperbolic and the anisotropic 
character of vehicular traffic is preserved.

We now turn to other hyperbolic features of the systems.

We refer to the waves associated with λ1 as 1-wave and those 
associated with λ2 as 2-waves. In order to determine those waves, 
we calculate the right eigenvectors ( )( ) ( )

1 2( , )ii iR r r=  of the matrix A(u) 
corresponding to Eigen values λ1, We now evaluate R1(u) 

1 1

2 2

'( )
0 '( )

u
u

r ru
u e p

r ru e p
ρ

ρ ρ
ρ ρ

−
−

      = −      −     

This means that ( )
1 2 1

'
2 2

( '( ))
( ) ( '( ))

u

u u

ur r u e p r
r u e p u e p r

ρ ρ ρ
ρ ρ ρ ρ

−

− −

+    −
=   − −   

Leading to r2=-r1(e-up′(ρ)) and r1=1 hence we have

( )1 1
'( )uR u

e p ρ−

 
=  − 

Similarly for R2(u) 

1 1

2 20 '( )u

r ru
u

r ru e p
ρ
ρ ρ−

    
=    −     

 Yielding to r2=0

Therefore ( )2 1
0

R u  
=  
 

The Eigen vectors for the Aw-Rascle model becomes

( )1 1
'( )

R u
p ρ

 
=  − 

( )2 1
0

R u  
=  
 

We now determine the kind of waves associated to each Eigen value 
λi,i=1,2 by checking whether the dot product ∇λi(u)⋅R(i)(u) varnishes or not.

For λ1(u) we have

( ) ( )( ) ( )

( )( ) ( )

1 ' '
'

1

' ' 2 2

1
(1 )( '( )

     '( )) 0

u u u
u

u

u u u

e p e p e p
e p

e p e p e p

ρ
ρ

ρ

λ
ρ ρ ρ ρ ρ

ρλ

ρ ρ ρ ρ ρ

− − −
−

− − −

∂   
⋅ = −∂ + + −   −∂   

= −∂ − − ≠

This implies that the 1st characteristic is genuinely non-linear.

Evaluating λ2(u), we have 2

2

1
 0

0u

ρλ
λ

∂   
⋅ =   ∂   

. Hence the 2nd 

characteristic field is linearly degenerate.

Comparing this model with the Aw Rascle model, we have

∇1(u)⋅r1(u)=-∂ρ(p′()) ≠ 0. This shows that the 1st characteristic field 
is genuinely non-linear.

∇2(u)⋅r2(u)=0 shows that the 2nd characteristic field is linearly 
degenerate.

Now we compute the Riemann Invariants for the Aggressive model 
across each wave as follows;

Across the λ1 -wave, we have 
1 '( )u

d du
e p

ρ
ρ−=

−
 which on re-

arrangement p′(ρ)d=-euduρ and on integration yields p(ρ)+eu=C

Across the λ2 -wave, we have 
1 0

d duρ
=  which on integration leads 

to u=C.

The left and right Riemann invariants now become;

IL(ρ,ρy)=p(ρ)+eu                                                                                    (13)

IR(,ρy)=u 					                   (14) 

Riemann Invariants for the Aw-Rascle model are;

Across the λ1 -wave, we have 
1 '( )

d du
p

ρ
ρ

=
−

,

Therefore

IL(ρ,ρy)=p(ρ) + u

And across the λ2- wave we have 
1 0

uρ∂ ∂
=  which on integration 

yields

IR(ρ,ρy)=u

From the above facts, we can conclude that in the Aggressive model 
the 1-wave will either be a rarefaction or shock waves and the 2-waves 
will be contact discontinuities [10].

Method of Solution
The numerical solution to the conservative system (9-10) will be 

achieved by use of numerical scheme based on the Godunov method.

To numerically solve the homogenous system

∂tU+∂xF(U)=0	              (15)

Suppose that at time t=tn, the initial data for (15) is given as U(x,tn). 
Then the first step of Godunov scheme is the evolution of the solution 
to a time tn+1=tn + ∆t. That is achieved through considering the cell 
averages.

( )
1
2

1
21 ,i

i

xn n
i x

U U x t dx
x −

+
=
∆ ∫

Which produces a piecewise constant approximation of the 
solution U(x,tn) as 

( ), n n
iU x t U= . For all x∈Ci, i=0,1,……m

The second step is obtaining the solution for the local Riemann 
problem 1RP( , )n n

i iU U +  at the cell interface xi+1/2 with data n
iU  and 1

n
iU +  

respectively on the left side and right side of position xi+1/2. 
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The solutions to this Riemann problem are self-similar solutions
~ ~ ~

1
~1 1 1

2 2 2

,    , , ,,   ,n n n
ii i i

xU x x x t t t x x x t t t
t

+

+ + +

   
 − − ∈ ∈        

= =


 that is, 

they are functions of Riemann Problem local co-ordinates 
~

~
x

t
 and 

are constituted by the 1-and 2-wave. Now for a sufficiently small time 
step ∆t, such that there are no eave interactions, we obtain the global 
solution ( )

~
,U x t in the entire spatial domain for t ∈ [0,∆t] by gluing 

together the solution of the local Riemann Problem at each interface 
of the cell as below;

( )
~~

~1
2

,
i

xU x t U
t+

 
=   

 
, for all (x,t)  [xi, xi+1]×[0,∆t]

Having obtained the solution ( )
~

,U x t  the final step of the Godunov 
scheme entail the evolution of the solution to a time tn+1=tn + ∆t by 
defining a new set { }1n

iU +  of average values as follows;

( )
1
2

1
2

~
1 11 ,

i

i

x

n n
i

x

U U x t dx
x

+

−

+ +=
∆ ∫

Within 1 1
2 2

 ,i i i
C x x

− +

 
=  
 

.

To guarantee that the interface of the i-waves, i=1,2 is entirely 
contained within cell Ci we impose the following CFL condition.

( ){ }1 ,  1,2
cflC x

t
max U iλ

∆
∆ ≤

=

Ccfl is called the Courant number and is usually set to 1. The CFL 
condition together with the integral form of the conservation law 
allows us to alternatively express 1n

iU +  in the following form;

1
1 1
2 2

n n n n
i i i i

tU U F F
x

+

− +

 ∆
= + − ∆  

With the inter cell numerical flux given by

( )1 1 1
2 2

( 0 ; , )n n n
i ii i

F F U U U−
+

+ +
=

Results
Phase transitions 

Figure 1 shows that as more vehicles perform the mandatory lane 
changes from lane 3 to lanes 1 and 2 with high flow rate, there is a 
decrease in velocity within deterministic disturbance.

A deterministic disturbance in free flow at the lane-drop bottleneck 
happens when vehicles merging from lane 3 onto the other two lanes 
compel the vehicles on these two lanes to decelerate in the vicinity of 
the lane-drop zone. This decrease in velocity causes an abrupt increase 
in density leading to F→S transition. As a result of the upstream 

propagation of the downstream front of synchronized flow that was 
initially fixed at the bottleneck there will be an increase in velocity 
within the deterministic disturbance. This velocity increase has some 
limit upon which the velocity of vehicles in synchronized flow increases 
and density decrease drastically, see Figure 2a, thus leading to a return 
to free flow at the lane-drop bottleneck. Hence S→F phase transition 
occurs, completing the hysteresis loop where the upper part is the 
deceleration branch associated with F→S transition while the lower part 
of the loop is the acceleration branch associated with S→F transition. 
However, this free flow traffic state exists for only a short period of 
time and then another F→S transition occurs spontaneously at the 
bottleneck as it can be seen in the Aw Rascle and Aggressive curves in 
Figure 2a. For Aw-Rascle model at the same location x=0, the traffic 
hysteresis loop is more pronounced unlike in the Aggressive model. 
This is as a result of more space gaps in the Aw-Rascle model as vehicles 
from lane 3 merge into the proceeding lanes 1 and 2 far upstream of the 
bottleneck and allows free movement in the lane drop merging zone. 
In the Aggressive model vehicles overlap at the bottleneck leaving little 
space to the approaching vehicles hence creating a dense traffic at the 
merging zone. This lowers the flow rate as compared to the Aw-Rascle 
model as Figure 2a shows. 
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Figure 1: Lane-drop bottleneck. Figure 1: Lane-drop bottleneck.
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Figure 2b also shows the flow-density relations at a location of 
the considered highway, i.e. upstream of the lane-drop, at x=-20. 
The growing narrow moving jams at x=0 in Figure 2a, merge later 
on to transform into wide moving jams at x=-20. In the course of 
formation of these narrow moving jams, the downstream front starts 
to propagate upstream from the lane-drop bottleneck. As a result, the 
density within the deterministic disturbance decreases past the limit 
necessary for sustainment of synchronized flow leading to a return to 
free flow. However this free flow state is short-lived and so another 
traffic breakdown occurs at the bottleneck and in turn another upward 
moving narrow jam emerges. This process is repeated resulting to a 
sequence of narrow moving jams of low velocity within them.

Spatiotemporal congested traffic patterns

In the previous section we have discussed the nature of traffic 
breakdown at a highway bottleneck (lane-drop). In this section we look 
at the variations of the two models in the features of spatiotemporal 
congested patterns which results in a highway once traffic breakdown 
has occurred at a lane-drop bottleneck (Figure 2).

After traffic breakdown is realized at the lane-drop bottleneck, 
various patterns of synchronized flow may result. These patterns are 
differentiated by the behavior of their upstream and downstream 
fronts that separate the synchronized flow within, from the free 
flow outside of the congested traffic. With increased flow rate at the 
bottleneck due to merging of vehicles, a wave of dense traffic appears 
and propagates upstream. Traffic breakdown (F→S transition) at the 
lane-drop bottleneck, which leads to the emergence of MSPs shown in 
Figure 3a, is explained by lane changing. Vehicles which move initially 
in lane 3 change to lane 1 and 2 upstream of the lane-drop bottleneck 

increasing the density in the two lanes and fluctuations upstream of 
the bottleneck. For this reason, when an increase in traffic demand 
upstream of the lane-drop bottleneck occurs, traffic breakdown is 
observed upstream of the bottleneck. Consequently, the downstream 
front of the resulting synchronized flow is also fixed upstream of the 
bottleneck while the upstream front of synchronized flow propagates 
upstream. However, a return of phase transition from synchronized 
flow to free flow (S→F transition) occurs at the bottleneck. The increase 
in traffic demand upstream of the lane-drop bottleneck, which has 
caused traffic breakdown and resulting synchronized flow emergence 
at the bottleneck, last a short time interval only in the Aw-Rascle model, 
as shown in Figure 3b. Then the resulting S→F transition can lead to 
the restoration of free flow only in a neighborhood of the bottleneck 
whereas there is still a region of synchronized flow upstream of the 
effective location of the lane-drop bottleneck. This causes the upstream 
propagation of the downstream front of the synchronized flow region, 
i.e., MSP formation. These MSPs or rather narrow jams grow (i.e. 
velocity decrease and density increase within them) as they move 
upstream of the lane-drop bottleneck. The phenomenon of growing 
narrow jams is that if two or more growing narrow moving jams are 
relatively close to one another and one of these narrow jams grow into 
a wide moving jam, then the further growth of the narrow jams that 
are nearby is suppressed and/or they merge with the wide jam that has 
been formed. Hence a S→J phase transition is realized. Moreover, if 
growing narrow moving jams are far enough from the wide moving 
jam, then the process of either suppressing and/or merging of these 
narrow jams result into another wide jam formation. 

Conclusion
In this study, macroscopic traffic flow models within the framework 

of Kerner's 3-phase traffic flow theory with consideration of driver 
aggressiveness in the context of Kenyan roads have been presented. 
The 3-phase traffic theory is constituted in the macroscopic equations 
through the relaxation term. By construction of the solutions to the 
Riemann problem, set up using the conservative form of the model, the 
model features have been explored further. The numerical method for 
solving the macroscopic model in conservative form is discussed and 
tests are carried out to show the effectiveness of the numerical method 
used. Using this numerical method we go ahead to simulate traffic flow 
on a roadway with a lane-drop bottleneck. Through these simulations, 
we assess the ability of the derived macroscopic traffic flow model 
i.e. the aggressive model to reproduce the complex spatiotemporal 
features of traffic flow. Namely the first order F→S transition and the 
coexistence of free flow (F), synchronized flow (S) and wide moving 
jams (J) as observed in real traffic flow. The empirical investigation 
indicate that unless synchronized flow is hindered, moving jams do not 
emerge in free flow but rather emerge in the synchronized flow phase 
of traffic. That is their emergence is due to a sequence of two first order 
phase transitions: F→S and S→J. This is because the onset of congestion 
in an initial free flowing traffic is associated with F→S transition and 
later on at some location upstream of the bottleneck, S→J transition 
occurs depending on the traffic demand. However the Aw-Rascle is 
shown not to reproduce these features. It has equally been shown that 
the Aggressive model respects the frontal aspects of traffic and does not 
produce negative travel.

References

1.	 Lighthill MJ, Whitham GB (1955) On Kinematic Waves: II. A Theory of Traffic 
Flow on Long Crowded Roads. Proc Royal Society London 229: 317-345.

2.	 Payne HJ (1971) Models of freeway traffic and control. Simulation council.

0.2              0.25              0.3              0.35             0.4

10

0

-10

-20

-30

-40

-50

10

0

-10

-20

-30

-40

-50
0             50           100           150          200         250           300

time(t)

di
st

an
ce

(x
)

0.2               0.25              0.3              0.35              0.4

0             50           100           150          200         250           300
time(t)

di
st

an
ce

(x
)

Aggressive-density

AwRascle-density

Figure 3: Spatiotemporal congested traffic patterns in (a) and (b). Figure 3: Spatiotemporal congested traffic patterns in (a) and (b).

https://www.jstor.org/stable/99769?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/99769?seq=1#page_scan_tab_contents


Citation: Kariuki E, Kimathi M, Mwenda E (2016) Vehicular Traffic Flow Model with Driver Aggressiveness Component in a Multilane Road. J Appl 
Computat Math 5: 309. doi:10.4172/2168-9679.1000309

Page 7 of 7

Volume 5 • Issue 3 • 1000309
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

3. Daganzo CF (1995) The nature of freeway gridlock and how to prevent it/
Institute of Transportation Studies. Trans Sci 34: 629-646.

4. Rascle AW, Rascle M (2000) Resurrection of \second-order" models of traffic 
flow. SIAM J Appl Math 60: 916-938.

5. Klar A, Rascle M, Materne T (2002) Derivation of Continuum Traffic Flow 
Models from Microscopic Follow-the-Leader Models. SIAM Journal on Applied 
Mathematics 63: 259-278.

6. Kimathi ME (2012) Mathematical model for the 3-phase Traffic flow Theory.

7.	 Kerner BS (2002) Effect of driver behaviors on spatiotemporal congested traffic 
patterns at highway bottlenecks in the frame work of three phase traffic theory.

8.	 Prigogine I (1961) A Boltzmann-like Approach to the Statistical Theory of Traffic 
Flow.

9.	 Helbing D (1998) Gas-kinetic-based traffic model explaining observed 
hysteretic phase transition. Phys Rev Letters 81: 3042-3045.

10.	Muñoz JC, Daganzo CF (2000) Experimental characterization of multi- lane 
freeway traffic upstream of an off-ramp bottleneck.

http://epubs.siam.org/doi/abs/10.1137/S0036139997332099
http://epubs.siam.org/doi/abs/10.1137/S0036139997332099
http://epubs.siam.org/doi/abs/10.1137/S0036139900380955
http://epubs.siam.org/doi/abs/10.1137/S0036139900380955
http://epubs.siam.org/doi/abs/10.1137/S0036139900380955
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi6stuBkbnNAhXLqI8KHZu6CXIQFggjMAA&url=https%3A%2F%2Fkluedo.ub.uni-kl.de%2Ffiles%2F2899%2Fthesis2kluedo.pdf&usg=AFQjCNFO6W5zosQM3q-AdmK8msn9udtGDQ&cad=rja
https://arxiv.org/ftp/arxiv/papers/1012/1012.5159.pdf
https://arxiv.org/ftp/arxiv/papers/1012/1012.5159.pdf
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.3042
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.3042
http://its.berkeley.edu/sites/default/files/publications/UCB/2000/PWP/UCB-ITS-PWP-2000-13.pdf
http://its.berkeley.edu/sites/default/files/publications/UCB/2000/PWP/UCB-ITS-PWP-2000-13.pdf

	Title
	Corresponding author
	Abstract 
	Keywords
	Nomenclature 
	Introduction 
	Driver aggressiveness 
	Governing equations 
	Continuity equation 
	Dynamic velocity equations 
	Features of the aggressive model 

	Method of Solution 
	Results 
	Phase transitions  
	Spatiotemporal congested traffic patterns 

	Conclusion 
	Figure 1
	Figure 2
	Figure 3
	References

