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Abstract
Bioactive glasses with chemical composition 0.1 SiO2-0.2 CaO-0.2 Na2O-0.5 P2O5 have been prepared. The 

dielectric properties of the samples were measured in the frequency range from 100 Hz to 1 MHz and temperatures 
range from 100 to 370 K (Tg ≈ 400 K). The obtained data were analysed by the means of dielectric permittivity 
representation and modelled using the Havriliak–Negami equation. Various relaxation parameters were calculated 
with accuracy. Furthermore, investigation of the temperature dependence of their relaxation time using the Vogel–
Tammam–Fulcher (VTF) model shows the weak interaction between alkali ions constituents and molecular network-
formers for temperatures up to the glass transition.

Keywords: Amorphous materials; Composite; Chemical synthesis;
Differential Scanning Calorimetry (DSC); Dielectric properties; 
Impedance spectroscopy electrical properties

Introduction
In the recent years, there is increasing demands of using and 

understanding bioglass materials for scientific research and industrials 
[1]. Silicate and phosphate glasses have been carried out with the aim 
to control physical, chemical and biological properties, such as second-
order nonlinear optical susceptibility and bioactivity, they have also 
found application as biomaterials to replace or repair hard or soft 
tissues [2-5]. Phosphosilicate based glasses produce a bonelike apatite 
layer on its surface when interacting with host medium [6-8]. Recently, 
researchers have been focusing on the bioactive phosphate glasses 
because they are unique class of materials that are biodegradable and 
biocompatible, and their degradation can be tailored for varying from 
days to several months as bone implant by changing the glass modifiers 
and preparation techniques [9,10]. By suitably altering the composition, 
the glass network modifier oxides like CaO and Na2O are added to 
phosphosilicate composite network in order to improve its electrical 
transport properties and to control the degree of solubility of bioactive 
glass in a physiological environment [11]. Further, the solubility of the 
bioactive glass has been directly linked to the ionic release from the 
material to the host medium. Hence the understanding of the alkali ion 
transport mechanism of the bioglass is very important. The dynamics 
of charges can be studied by analytical technique of alternating current 
impedance spectroscopy which has been considered as the best tool for 
understanding the dynamics of alkali ions in the bioactive glass [12]. 
The real and imaginary parts, of the dynamics modulus formalism and 
complex impedance representation of phosphate-silicate bioactive 
glass has been studied, respectively, by Mai et al. and Mariappan et al. 
they suggest that the observed relaxations in the bioactive glass may 
be more appropriately considered as an intrinsic property of the non-
periodic arrangement of atoms or ions in a solid than as being due to 
the diffusion of specific types of ions in it [13,14].

Dielectric relaxation and related phenomena are present in this 
bioactive glass and their investigation is essential not only from the 
practical point of view due to the potential application, but also for 
the insight information that can provide referring to molecular/ions 

mobility, polarization and conductivity mechanisms [15-17]. These 
amorphous bioactive glasses are formed by the mixture of the merit 
compositions of silicate-phosphate as a network formers and sodium-
calcium network modifiers powders which are considered as disordered 
system and many equations have been proposed for describing their 
behavior in terms of the permittivity of their constituents.

The aim of this study was to investigate the dielectric relaxation 
behaviour and electrical mobility of the phosphosilicate bioglass 
composite containing 0.1 SiO2-0.2 CaO 0.2 Na2O-0.5 P2O5 and to 
their modelling. The relaxation phenomenon exhibited by the sample 
in the range from 100 Hz to 1 MHz was studied as a function of the 
temperature below the glass transition point Tg. In order hand, it is 
known that glass-forming materials are characterized by a number of 
unusual properties, which seem to be inherent to the glassy state of 
matter and which are quite universally found in such different types of 
materials [18-20]. May be the most prominent examples are the non-
exponential time dependence of their relaxation behaviour and the 
non-Arrhenius temperature dependence of their structural relaxation 
dynamics [21]. Furthermore, there are numerous competing theoretical 
models of the glass transition that can describe the observed behavior 
with various levels of precision and the glass-physics community still 
is far from reaching any consensus in the settlement of this question 
[22-24].

In our case and in order to parameterize the obtained results on the 
temperature-dependent relaxation, we revert to the most prominent 
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Vogel-Fulcher-Tammann (VFT) law phenomenological approach 
[25].

Experimental Techniques
Sample preparation

Sample of phosphosilicate bioactive glass with chemical 
composition 0.1 SiO2-0.2 CaO-0.2 Na2O-0.5 P2O5 was prepared from 
Na2CO3 (99.98%), CaCO3 (100%), SiO2 (99.9%) and (NH4)2HPO4 
(99.8%) powders. Initially, they reagents (NH4)2HPO4, Na2CO3 and 
CaCO3 were kept in an oven and tried at 400 K for 12 hours in order 
to remove any traces of water and   absorbed gases CO2 and NO2. 
Then stoichiometric amounts of the starting materials were weighed 
by using digital electronic balance and were grounds in a gate mortar 
for a few minutes. The mixtures were placed in alumina crucible and 
melted in an electric furnace at 1100 K for one hour. After complete 
homogenization, the melt was poured into preheated stainless steel 
mold with a cylindrical shape.

Measurements

Differential scanning calorimetry (DSC) measurement was 
performed on a DSC 121 RM under an Ar flux and a heating rate of 10°C/ min. 
For the dielectric measurements, the sample were  prepared as a disc 
with a thickness of about 1 mm. Aluminium electrodes of 10 mm 
diameter were deposited on the opposite sides of the samples. The 
electrical leads were fixed by silver paint. The dielectric measurements 
were carried out, in the frequency range from 100 Hz to 0.2 MHz, using 
a SR850 DSP Lock-In Amplifier, in the typical lock-in configuration. We 
measured the “in-phase” (Vf) and the “out-of phase” (Vq) components 
of the sample signal, and then we calculated the real and imaginary 
parts of the complex impedance *( )Z ω , using the expressions: 
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Where ω is the angular frequency. This equation was obtained 
when the sample impedance is in series with a known resistance (1 kΩ), 
which is in parallel with the lock-in input impedance. Ri represents the 
equivalent resistance of the lock-in input resistance (100 MΩ) and the 
known resistance, Ci the lock-in input capacitance (15 pF), V0 the input 
signal (|V0|=1 V), and Vf and Vq the “in-phase” and the “out-of-phase” 
components of the measured signal. The sample was modeled by a 
lumped circuit consisting of a resistance and a capacitor in parallel. The 
complex admittance *( ) 1 / * ( ) ( ) ( )Y Z G j Bω ω ω ω= = +  can be converted 
into complex permittivity formalism *( ) '( ) ''( )jε ω ε ω ε ω= −  by the 
relations: 
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where A is the cross-sectional area of the sample, e  is its thickness and 
0ε  is the permittivity of a vacuum ( 0ε = 8.85 x 10−12  F m−1).  The terms 
( )G ω and ( )B ω  are respectively the conductance and the susceptance 

of the samples. Estimating relative errors on both real and imaginary 
part of the complex permittivity are:  '/ ' ''/ '' 5%ε ε ε ε∆ = ∆ ≤ . 

Results and Discussion
X-ray and DSC  analysis

The X-ray diffraction pattern shows no crystalline phases in the 
bioglass sample. Figure 1 presents the diffraction spectrum of the 
sample; this latter is amorphous as indicated by the absence of Bragg 
peaks and presence of amorphous halos.

Figure 2 shows the heating DSC thermogram of the bioglass sample. 
At about 420 K a change in the base line is observed. This phenomenon 
is attributed to the glass transition temperature Tg. This measurement 
indicates that the glass transition temperature Tg, which is associated to 
the transition from a glass like form to a rubbery. It should be reminded 
that the determination of Tg, in our case, was carried out according to 
the method of the tangents. As, in general, a glass transition involves 
a small flow of heat, the detected variations of capacity calorific or 
enthalpy are also small, and for this, the determination is not very 
accurate.

Analysis of dielectric spectrum and modeling

The study of frequency dependent permittivity spectra is a well-
established method for characterizing the hopping dynamics of ions. 
Frequency dependence on real (ε׳) and imaginary (ε״) parts of the 
effective dielectric permittivity ε* spectra at various temperatures of 
the phosphosilicate bioglass composite containing 0.1SiO2-0.2CaO-
0.2Na2O-0.5P2O5 are shown in Figure 3. The appearance of broad 
dielectric relaxations for temperature below Tg on the isothermal 
runs of the loss factor is presented in these measurements, as shown 
in Figure 3a, it is observed that the low-frequency value of ε׳ is high 
reaches to sε  which decreases with increasing frequency and reaches a 
minimum asymptotic value ε∞  at high frequency. The ε״ spectrum in 
Figure 3b exhibits a maximum ''

mε  centred in dispersion region of ε׳ and 
the peak position is shifted to the high frequency side with increasing 
temperature. From aforementioned analysis, one can conclude that the 
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Figure 1: Typical X-ray diffraction pattern of the bioglass sample.

0 100 200 300 400 500 600 700
-35

-30

-25

-20

en
do

 

DS
C 

(m
W

)

T (K)

Figure 2: Temperature dependence of the DSC signal for bioglass sample.
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modeling for the dielectric permittivity. The basic functional form of ε* 
is well known and can be expressed as:
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We performed a fit to the data using the Equations (2-4) for ε׳ 
and ε״ from which we extract the parameters α and β which gauge the 
broadening of the loss spectrum. Figure 5 shows the evolutions of the 
relaxation parameters with temperature, it appears that the behavior of 
the parameters α and β reveal that dielectric data are best fitted according 
to the CD model at low temperatures (T < 300 K) and according to 
the CC model for high temperatures (T > 350 K). The decrease of α 
and increase of β with increasing of temperature indicating that the 
system departs from the Debye model this behavior is due to the 
changing dynamics of dipole clusters in low temperature and to alkali 
ion dynamics in network bioactive glasses. Indeed, the temperature-
dependence of relaxation times reveals a steadily decreasing behavior 
due to an increase molecular dipoles mobility as temperature increases, 
for a higher temperature (T > 350 K), the relaxation time does not 
depend of temperature which indicate that the mechanism does not 
result simply from thermally activated dipolar interactions but may be 
also related to a cooperative effect of network modifiers (alkali ions) frequency region below the peak maximum of ε״ determines the range 

in which charge carriers are mobile over long distances and in the 
region above the peak maximum the carriers are confined to potential 
wells being mobile over short distances [26,27].

For modeling these behaviors, we used the Nyquist diagram 
representation, as depicted in Figure 4a. The unsymmetrical profile of 
ε״ indicates that the single relaxation time as described by the Debye 
equation is inappropriate for describing the electrical relaxation and 
should be replaced by Havriliak-Negami (HN) phenomenology [28]:         
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Where the positive constants sε and ε∞ denote the static (ω = 0) and 
the high frequency values of the permittivity, respectively. ω denotes the 
angular frequency (ω =2πF), τ is the relaxation time of the composite, 
α is the shape parameter representing symmetrical distribution 
of relaxation time and β is the shape parameter of an asymmetric 
relaxation curve. The maximum frequency of the relaxation peak in *ε
(ω) is approximately situated at 1/2πτ. The width parameter α specifies 
the slope of the low frequency side of the relaxation and αβ−  gives 
the slope of the high frequency side of the relaxation in "ε (ω) [21]. 
The Havriliak-Negami (HN) equation includes the Debye model for 
( 1α β= = ), Cole-Cole model (CC) for ( 1β = ) and Cole-Davidson 
(CD) model for ( 1α = ). 

Our goal now is to assess with accuracy the behavior of ε*(ω) 
according to the HN model. One of the most popular ansatz for the 
relaxation in dielectric materials is given by the HN phenomenology 
(Equation 1). Figure 4b shows an example of the (ε״, ε׳) vs. frequency 
and ε״ vs. ε׳ data along with a simulation (solid line) based on the HN 
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Figure 3: Real ε׳(a) and imaginary ε״(b) parts of the complex permittivity vs. 
frequency for the sample in the temperature range (260K - 370K).
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Figure 4: (a) Nyquist plot of the same sample. (b) Plot of ε״ and ε׳ as a 
function of frequency at room temperature. The solid curve is produced by 
best fitting experimental points using the Equations.(2-4), the fit parameters 
are τ = 3.77 10-5 s, α = 0.95 and β = 0.44.
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mesostructure. Because the mobile alkali ions in the mixed bioactive 
glass create a polarization system by reorienting locally, and are also 
responsible for conduction by separating itself from the immediate 
neighbourhood [29].

In order to further elucidate the dielectric relaxation in bioglass 
composite, it is important to estimate the activation energy associated 
with the relaxation process which could be obtained from the 
temperature dependence of relaxation times. Figure 6 shows the 
logarithms of relaxation time dependence of the inverse of temperature. 
It is clear from this figure that, below Tg the temperature dependence of 
relaxation times typically follows the Vogel-Tammam-Fulcher (VTF), 
this latter has also been experimentally observed in a variety of super 
cooled organic liquids, polymers and bioglasses which is characteristic 
of cooperative relaxations [29-32].  

0

ln
( )B VF

w
k T T

τ
τ
 

= 
− 

                                                                         (5)

where τo is the relaxation time in the high temperature limit, kB is the 
Boltzmann constant and TVF  is an ordering temperature below Tg. W 
is directly related to activation energy. If we regard that the VTF law 
describes a thermally activated process, the W is approaching infinity 
at TVF.

 In Equation 5 the non-Arrhenius behaviour is taken into account 
by introducing the Vogel-Fulcher temperature T as an additional 
parameter leading to a divergence at T = TVF. This divergence may be 

taken as indication of a phase-transition-like “ideal” flass transition 
that would occur at a temperature TVF below the glass temperature Tg, 
which, however, is avoided for dynamical reasons. It provides some 
support to theories that assume such a transition underlying the 
evolution of the glass state [18,24].

The best fit of our data using maximum likelihood yields τo≈ 8.03 
10-9 s, TVF≈ 220K which an ordering temperature lower than the Tg 
whose significances has remained unclear (there is no microscopic 
presentation to calculate TVF), and free energy of thermal activation 
energy W=58.08 meV with a correlation coefficient of R=0.998 which 
we interpret as the average potential barrier between different sites 
inside the network heterostructure. The obtained value of W is very 
smaller than the data of Dutta et al. [29] those investigated the dielectric 
relaxation of the Na2O-CaO-Si2O system with various concentrations 
of alkali ions, this difference may be related to the effect of phosphate 
(P2O5) that is added in this study, on the rigidity of network 
mesostructure which caused the decreases in activation energy.

Conclusion
The effective complex permittivity of bioactive glass composite 

was studied over a frequency range from 100 Hz to 1 MHz and in a 
temperature range from 100 to 370 K by impedance spectroscopy. This 
study exhibits typical dielectric relaxation process which was modelled 
using the Havriliak–Negami phenomenological. The analysis of the 
temperature dependence of their relaxation time using the Vogel-
Tamman- Fulcher (VTF) model shows a weak interaction in the 
bioactive network. 
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