VA-ECMO as a Bridge to Surgery on Bioprosthetic Valve Thrombosis: Approaches to Consider in Emergency

Akoluk A¹, Douedi S²*, Meleka M², Asgarian K², Apolito R² and Hossain MA²
¹Department of Internal Medicine, Jersey Shore University Medical Centre, Neptune, USA
²Department of Cardiology, Jersey Shore University Medical Centre, Neptune, USA

Abstract

Prosthetic Valve Thrombosis (PVT) is a rare complication of bioprosthetic valve. Surgery is the preferred treatment for PVT. Severe cases of prosthetic valve thrombosis may result in cardiopulmonary failure with Acute Respiratory Distress Syndrome (ARDS). This case report emphasis the role of VA-ECMO in cases of PVT with ARDS as a bridge to surgery.

Keywords: Surgery; Bioprosthetic valve; Hypertension

Learning Objectives

• To be able to recognize Prosthetic valve thrombosis.
• To be able to acknowledge the potential of VA-ECMO as a bridge to surgery in severe cardiopulmonary failure cases due to Prosthetic Valve Thrombosis.

Introduction

Degenerative valve disease is on the rise with greater than 100,000 valve operations performed in the US alone per year. The majority of those procedures employ tissue bio prostheses to avoid the attendant risk of anticoagulation, especially in the elderly. The literature has extensively addressed the risks and benefits of anticoagulation following bioprosthetic valve replacement to prevent bioprosthetic valve thrombosis (BPVT), without conclusive evidence-based recommendations. In this review, we summarize BPVT as a clinical and subclinical entity, outline its diagnostic challenges, provide an overview of its pathophysiological basis, and discuss various therapeutic options.

Case Report

History of presentation and past medical history

The patient is a 35-year-old female with history of severe mitral valve degenerative disease, status post mitral valve replacement with a bioprosthetic valve, Atrioventricular nodal re-entry tachycardia ablation, and asthma presented with dyspnoea on exertion. One week prior to admission she went to her cardiologist and outpatient echocardiogram showed significant bio-prosthetic mitral valve regurgitation which was completely normal on echo done 4 months ago. At admission, her vitals were stable. Lung exam showed no crackles, rhonchi or wheezing, cardiac exam was consistent with mitral valve regurgitation. During her hospitalization, she became hypotensive and developed respiratory failure required ventilator and vasopressor support.

Investigations

Initial laboratory results were unremarkable except mild elevation AST and ALT with 111 and 191 respectively. Extensive coagulopathy workup was done showed factor two heterozygous mutation. HIV, Hepatitis B and C screening was negative. Transthoracic echo showed severe pulmonary hypertension. Trans Esophageal Echocardiogram (TEE) revealed the left atrium had extensive echo densities along the bioprosthetic mitral valve and along the walls and cavity of the left atrium. The thrombus was severely limiting bioprosthetic mitral valve function resulting in severe mitral stenosis and pulmonary hypertension.

Surgical pathology showed bioprosthetic valve covered with, valvular leaflet tissue with organizing fibrin/haemorrhage consistent with thrombosis.

Management

The patient developed severe acute pulmonary edema and respiratory failure. She was placed on femoral VA-ECMO and after hemodynamic stabilization taken to operation room for declotting and removal of thrombus from the left atrium with redo mitral valve with a 31 mm mechanical St. Jude valve. The patient remained in the intensive care unit for 10 days postoperatively. She was weaned from ECMO and extubated but was kept on multiple pressor and milrinone for ionotropic support. Eventually, she was weaned off from milrinone before discharge. She was bridged with anticoagulation and discharged to rehab.

Follow-up

On follow up, she was feeling better and symptoms free for 6 months. She had a repeat TEE done outpatient which showed normal functioning mechanical valve.

Discussion

Bioprosthetic Heart Valves (BHV) tend to be thrombogenic than MHV and have natural hemodynamic properties but are less durable. Although BHV thrombosis generally presents with PV degeneration, PV thrombosis may also be associated with new-onset regurgitation or mixed stenosis and regurgitation. Surgery is the preferred treatment for left-sided PVT [1,2]. Severe cases of prosthetic valve thrombosis may result in cardiopulmonary failure with Acute Respiratory Distress Syndrome (ARDS) [3]. Veno-arterial ECMO (VA-ECMO) is a device that provides both circulatory and pulmonary support by draining blood from a vein and sending oxygenated blood to artery [3,4]. This approach is instrumental in supporting the patient to a state of fibrinolysis and clot removal to allow for successful mitral valve repair or replacement.

*Corresponding author: Douedi S, Department of Internal Medicine, Jersey Shore University Medical Centre, Neptune, USA, Tel: +7323302771; E-mail: Steven.douedi@hackensackmeridian.org

Received December 10, 2019; Accepted December 30, 2019; Published January 06, 2020


Copyright: © 2019 Akoluk A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conclusion

PVT is a rare complication of bioprosthetic valve which can lead to cardiopulmonary shock and ARDS. VA-ECMO should be considered in such cases and use as a bridge to surgery. More study and case reports need to be reported in this area to establish it as a standard of care in a critical patient like in our case.

References