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Zebrafish are a new vertebrate animal model with advantages 
for screening and development of therapeutic agents. Many 
biochemical pathways present in humans are conserved in zebrafish. 
Zebrafish embryos develop rapidly (first somite at about 10 hours of 
development compared to 9-10 days in the rat) outside of the mother 
with the potential for generating hundreds of embryos from a single 
mating. Zebrafish can be grown in plates for several days to allow easy 
observation and use in High-Throughput Screening (HTS). The early 
embryos are also transparent, providing the ability to observe specific 
cells or brain regions during development without the need to kill the 
animals. Embryogenesis is complete by 72 hours post fertilization (hpf) 
and most organs are fully developed at 96 hpf [1]. A large number of 
mutants are available and much of the genome has been sequenced 
(http://www.sanger.ac.uk) which allows the genetic advantages of 
mice, but with a short generation time (2-3 months). Zebrafish neural 
development occurs in a well characterized pattern and well-defined 
molecular markers (antibodies, DNA probes) are available to help 
identify specific cells and brain regions. Transgenic zebrafish have 
been developed which express GFP in specific cells [2] and allow for 
the activity of specific neurons to be monitored in vivo [3]. The small 
size of zebrafish makes them ideal for use in 96 or 384 well plates. The 
cost to maintain zebrafish is a fraction of that for mice since they don’t 
require feeding until 6-7 days post fertilization. 

The use of zebrafish allows one to combine the ability to perform 
behavioral assays with HTS [4]. Many behavioral assays developed in 
other animals, and which are used to assay drugs targeted to several 
neurological diseases, are available in zebrafish [5]. These include 
Prepulse Inhibition (PPI), startle response, locomoter and learning 
assays. These can be performed on a higher scale and at much lower 
cost than in other vertebrates. The data collection and analysis from 
many of these tests can be automated [4]. Indeed, zebrafish can be used 
at several points in the drug discovery process. Zebrafish are ideal for 
testing drug toxicity on a large scale, thus saving much time, money 
and effort to further develop a compound with toxicity in vertebrates. 
In many cases, compounds with known toxicity in humans have 
a similar response in zebrafish [1]. Zebrafish have also been used in 
target confirmation after a lead compound has been identified. In 
vivo Structure Activity Relationship (SAR) studies in zebrafish have 
been performed [6]. Using in vivo screens during early stages of drug 
discovery could produce great savings in time, money and efficiency. 
Zebrafish have been used already in a large number of small molecule 
screens in both wild-type and mutant fish [1]. Zebrafish have also been 
used for targeted screens as well. 

Methodologies are being developed for rapid behavior-based 
identification of neuroactive small molecules in zebrafish [7]. Thus it 
may be useful to screen and develop drugs to treat illnesses related to 
cholinergic and dopaminergic systems in zebrafish. Neuronal Nicotinic 
Acetylcholine Receptors (nAChRs) are involved in several CNS 
disorders such as addiction, Alzheimer’s, epilepsy, and schizophrenia 
period [8]. 

nAChRs are pentameric structures [9,10] which function as ligand-
gated ion channels permeable to Na+, K+ and Ca2+ and are composed of 
multiple α and β subunits. There are nine neuronal nAChR α subunit 

genes (α2-α10) and three nAChR β subunit genes (β2-β4) and distinct 
subtypes are formed from combinations of α and β subunits. nAChR 
subtypes are designated as homo- or hetero-pentameric, depending 
on the subunit composition. Heteromeric receptors contain both 
α and β subunits with the α4β2 receptor being the most prominent 
heteromer in the brain. Homomeric receptors are comprised of only 
α subunits with the α7 nAChR being the primary homomer. Each 
neuronal nAChR subtype also has a distinct pharmacology with 
both the α and β subunits determining the sensitivity to agonists and 
antagonists [11,12]. Individual subtypes also have distinct ion channel 
properties such as conductance, rate of desensitization and channel-
open time [13]. Neuronal nAChRs are often located presynaptically in 
the CNS and modulate release of important neurotransmitters such 
as norepinephrine, serotonin, Gamma Aminobutyric Acid (GABA), 
glutamate, and dopamine [14]. 

Cholinergic cells are distributed in zebrafish in a pattern similar 
to that seen in other vertebrate animals, present in sites including 
autonomic ganglia, the telencephalon, cranial motor nuclei, spinal 
cord, olfactory bulb, retina, tegmentum, and cerebellum [15]. We have 
cloned nine zebrafish neuronal nAChR cDNAs (α2, α3,α4, α6, α7, α8, 
β2, β3, β4). The structure of each nAChR gene has been determined by 
comparison of the cDNAs to the genome sequence. The α2-α6 and β2-
β4 genes each have six exons as in other vertebrates while the α7 gene 
has ten as in other species. The expression patterns of the α2, α4, α6, α7, 
β3 genes have been determined [16,17]. Many of these are expressed 
in regions analogous to structures in rats and mice. For example, 
the α6 nAChR subunit gene is expressed in zebrafish dopaminergic 
neurons as in mice. Zebrafish neuronal nAChRs subunits have been 
expressed in oocytes and the pharmacology of several combinations 
including α3β4, α4β2 and α7 determined [18]. For the most part, our 
work has shown that the pharmacology of cholinergic compounds 
in zebrafish is similar to that in other vertebrates and can be used to 
interpret behavioral assays used in HTS. Zebrafish are amenable to 
high throughput screening approaches to test compounds for effects on 
learning, memory, and anxiety. Zebrafish have been used to examine 
the anxiolytic effects of nicotine [19], spatial discrimination learning 
[20] and delayed spatial alternation [21].

Dopamine signaling is involved in addiction, schizophrenia and
Parkinson’s disease. Zebrafish orthologs of all four human dopamine 
receptors and associated enzymes have been identified [22]. Zebrafish 
have a well characterized set of catecholaminergic neurons, but the 
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homolog to the human mesencephalic dopamine neurons, has not 
been identified, although a possible region has been put forward [23]. 
Zebrafish have been used to screen for potential neuroprotective 
compounds in a zebrafish model of Parkinson’s [24]. There is great 
potential to develop zebrafish disease models and behavioral assays 
which can be used in HTS for drugs which affect dopaminergic 
pharmacology.

The advantages of zebrafish for pharmaceutical screening [25] can 
be exploited to complement existing cell culture and mouse studies to 
test and develop new therapeutic compounds. Development and testing 
of compounds targeted to cholinergic and dopaminergic systems can 
take advantage of the use of zebrafish for HTS and development of 
disease models.
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